You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/inplace_op_inference_test.cc

329 lines
12 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimize_helper.h"
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_type_inference.h"
USE_PASS(inplace_pass);
namespace paddle {
namespace framework {
std::unique_ptr<ir::Pass> CreateInplacePass() {
auto pass = ir::PassRegistry::Instance().Get("inplace_pass");
pass->Set<bool>(ir::kUseCuda, new bool(true));
return pass;
}
class NOP : public OperatorBase {
public:
NOP(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const Scope& scope,
const platform::Place& place) const override {}
};
class SingleOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddComment("");
}
};
class SingleGradOpMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op = new framework::OpDesc();
op->SetType("single_op_grad");
op->SetInput("Out", OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
return std::unique_ptr<OpDesc>(op);
}
};
class SingleOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
ctx->HasInput("X");
ctx->HasOutput("Out");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
}
};
class SingleGradOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
ctx->HasInput(framework::GradVarName("Out"));
ctx->HasOutput(framework::GradVarName("X"));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Out"));
}
};
class MultiOutOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddInput("Y", "").AsDuplicable();
AddInput("Z", "").AsDuplicable();
AddOutput("Out", "");
AddOutput("YOut", "");
AddOutput("ZOut", "");
AddOutput("NotReuseOut", "");
AddComment("");
}
};
class MultiOutShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
ctx->ShareDim("X", "Out");
ctx->ShareDim("Y", "YOut");
ctx->ShareDim("Z", "ZOut");
}
};
class MultiGradOpMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op = new framework::OpDesc();
op->SetType("multi_out_grad");
op->SetInput("X", Input("X"));
op->SetOutput(framework::GradVarName("Y"), OutputGrad("YOut"));
op->SetOutput(framework::GradVarName("X"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("Z"), OutputGrad("ZOut"));
return std::unique_ptr<framework::OpDesc>(op);
}
};
class MultiOutGradShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim(framework::GradVarName("Y"),
ctx->GetInputDim(framework::GradVarName("YOut")));
ctx->SetOutputDim(framework::GradVarName("X"),
ctx->GetInputDim(framework::GradVarName("Out")));
ctx->SetOutputDim(framework::GradVarName("Z"),
ctx->GetInputDim(framework::GradVarName("ZOut")));
}
};
class MultiOutInplaceInToOut : public framework::InplaceOpInference {
public:
std::unordered_map<std::string, std::string> operator()(
const OpDesc& op_desc, bool use_cuda) const override {
return std::unordered_map<std::string, std::string>{
{"X", "Out"}, {"Y", "YOut"}, {"Z", "ZOut"},
};
}
};
class MultiOutGradInplaceInToOut : public framework::InplaceOpInference {
public:
std::unordered_map<std::string, std::string> operator()(
const OpDesc& op_desc, bool use_cuda) const override {
return std::unordered_map<std::string, std::string>{
{framework::GradVarName("YOut"), framework::GradVarName("Y")},
{framework::GradVarName("Out"), framework::GradVarName("X")},
{framework::GradVarName("ZOut"), framework::GradVarName("Z")},
};
}
};
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
REGISTER_OPERATOR(single_op, f::NOP, f::SingleOpMaker, f::SingleGradOpMaker,
f::SingleOpInplaceInToOut, f::SingleOpShapeInference);
REGISTER_OPERATOR(single_op_grad, f::NOP, f::SingleOpInplaceInToOut,
f::SingleGradOpShapeInference);
REGISTER_OPERATOR(multi_out_op, f::NOP, f::MultiOutOpMaker, f::MultiGradOpMaker,
f::MultiOutInplaceInToOut, f::MultiOutShapeInference);
REGISTER_OPERATOR(multi_out_grad, f::NOP, f::MultiOutGradInplaceInToOut,
f::MultiOutGradShapeInference);
namespace paddle {
namespace framework {
void FakeSuccData(ProgramDesc* prog) { // NOLINT
prog->MutableBlock(0)->Var("test2_a")->SetType(proto::VarType::LOD_TENSOR);
prog->MutableBlock(0)->Var("test2_a")->SetShape({32, 64, 128, 128});
prog->MutableBlock(0)->Var("test2_b")->SetType(proto::VarType::LOD_TENSOR);
prog->MutableBlock(0)->Var("test2_c")->SetType(proto::VarType::LOD_TENSOR);
prog->MutableBlock(0)->Var("test2_out");
prog->MutableBlock(0)->Var("test2_out")->SetShape({64, 32, 128, 128});
}
void FakeNoInplaceData(ProgramDesc* prog) { // NOLINT
prog->MutableBlock(0)->Var("test2_a")->SetType(proto::VarType::LOD_TENSOR);
prog->MutableBlock(0)->Var("test2_a")->SetShape({32, 64, 128, 128});
prog->MutableBlock(0)->Var("test2_b")->SetType(proto::VarType::LOD_TENSOR);
prog->MutableBlock(0)->Var("test2_c")->SetType(proto::VarType::LOD_TENSOR);
prog->MutableBlock(0)->Var("test2_out");
prog->MutableBlock(0)->Var("test2_out")->SetShape({64, 31, 128, 128});
}
ir::Node* GetNodeFromGraph(ir::Graph* g, std::string name) {
ir::Node* op_node = nullptr;
for (auto& item : g->Nodes()) {
if (item->Name() == name) {
op_node = item;
break;
}
}
return op_node;
}
std::unique_ptr<ir::Graph> test_SingleOpInplaceInToOut(
std::unique_ptr<ir::Graph> g) {
auto pass = CreateInplacePass();
ir::Node* op_node = GetNodeFromGraph(g.get(), "single_op");
EXPECT_NE(op_node, nullptr);
pass->Apply(g.get());
return g;
}
TEST(InferInplace, SingleOpInplaceInToOut) {
ProgramDesc prog;
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("single_op");
op->SetInput("X", {"test2_a", "test2_b", "test2_c"});
op->SetOutput("Out", {"test2_out"});
FakeSuccData(&prog);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
g = test_SingleOpInplaceInToOut(std::move(g));
auto op_node = GetNodeFromGraph(g.get(), "single_op");
EXPECT_EQ(op_node->outputs[0]->Name(), "test2_a");
}
TEST(InferInplace, SingleOpInplaceInToOutNoInplace) {
ProgramDesc prog;
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("single_op");
op->SetInput("X", {"test2_a", "test2_b", "test2_c"});
op->SetOutput("Out", {"test2_out"});
FakeNoInplaceData(&prog);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
g = test_SingleOpInplaceInToOut(std::move(g));
auto op_node = GetNodeFromGraph(g.get(), "single_op");
EXPECT_EQ(op_node->outputs[0]->Name(), "test2_out");
}
TEST(InferInplace, MultiOutInplaceInToOut) {
ProgramDesc prog;
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("multi_out_op");
op->SetInput("X", {"a0", "a1"});
op->SetInput("Y", {"b0"});
op->SetInput("Z", {"c0", "c1"});
op->SetOutput("Out", {"o0"});
op->SetOutput("YOut", {"y0"});
op->SetOutput("ZOut", {"z0"});
prog.MutableBlock(0)->Var("a0")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b0")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c0")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c1")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("o0");
prog.MutableBlock(0)->Var("y0");
prog.MutableBlock(0)->Var("z0");
prog.MutableBlock(0)->Var("a0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("b0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("c0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("o0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("y0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("z0")->SetShape({32, 16, 1024, 1024});
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
auto pass = CreateInplacePass();
pass->Apply(g.get());
auto op_node = GetNodeFromGraph(g.get(), "multi_out_op");
ASSERT_TRUE(op_node != nullptr);
EXPECT_EQ(op_node->outputs[0]->Name(), "a0");
EXPECT_EQ(op_node->outputs[1]->Name(), "b0");
EXPECT_EQ(op_node->outputs[2]->Name(), "c0");
}
TEST(InferInplace, MultiGradInplaceInToOut) {
ProgramDesc prog;
auto* op = prog.MutableBlock(0)->AppendOp();
op->SetType("multi_out_grad");
op->SetInput(GradVarName("Out"), {"o0"});
op->SetInput(GradVarName("YOut"), {"y0"});
op->SetInput(GradVarName("ZOut"), {"z0"});
op->SetOutput(GradVarName("X"), {"a0", "a1"});
op->SetOutput(GradVarName("Y"), {"b0"});
op->SetOutput(GradVarName("Z"), {"c0", "c1"});
prog.MutableBlock(0)->Var("a0")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b0")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c0")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c1")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("o0");
prog.MutableBlock(0)->Var("y0");
prog.MutableBlock(0)->Var("z0");
prog.MutableBlock(0)->Var("a0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("b0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("c0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("o0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("y0")->SetShape({32, 16, 1024, 1024});
prog.MutableBlock(0)->Var("z0")->SetShape({32, 15, 1024, 1024});
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
auto pass = CreateInplacePass();
pass->Apply(g.get());
auto op_node = GetNodeFromGraph(g.get(), "multi_out_grad");
ASSERT_TRUE(op_node != nullptr);
EXPECT_EQ(op_node->outputs[0]->Name(), "o0");
EXPECT_EQ(op_node->outputs[2]->Name(), "y0");
EXPECT_EQ(op_node->outputs[3]->Name(), "c0");
std::unordered_map<std::string, std::string> expects = {
{"o0", "a0"}, {"y0", "b0"}, {"z0", "c0"},
};
}
} // namespace framework
} // namespace paddle