You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc

175 lines
5.5 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
struct DataRecord {
std::vector<std::vector<int64_t>> query, title;
std::vector<size_t> lod1, lod2;
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= query.size()) {
GetInputPerBatch(query, &data.query, &data.lod1, batch_iter, batch_end);
GetInputPerBatch(title, &data.title, &data.lod2, batch_iter, batch_end);
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
// load query data
std::vector<int64_t> query_data;
split_to_int64(data[0], ' ', &query_data);
// load title data
std::vector<int64_t> title_data;
split_to_int64(data[1], ' ', &title_data);
query.push_back(std::move(query_data));
title.push_back(std::move(title_data));
}
num_samples = num_lines;
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor lod_query_tensor, lod_title_tensor;
lod_query_tensor.name = "left";
lod_title_tensor.name = "right";
auto one_batch = data->NextBatch();
// assign data
TensorAssignData<int64_t>(&lod_query_tensor, one_batch.query, one_batch.lod1);
TensorAssignData<int64_t>(&lod_title_tensor, one_batch.title, one_batch.lod2);
// Set inputs.
input_slots->assign({lod_query_tensor, lod_title_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
void SetConfig(contrib::AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
for (int bid = 0; bid < epoch; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
(*inputs).emplace_back(input_slots);
}
}
// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
PADDLE_ENFORCE_EQ(outputs.size(), 2UL);
for (auto &output : outputs) {
size_t size = GetSize(output);
PADDLE_ENFORCE_GT(size, 0);
float *result = static_cast<float *>(output.data.data());
// output is probability, which is in (-1, 1).
for (size_t i = 0; i < size; i++) {
EXPECT_GT(result[i], -1);
EXPECT_LT(result[i], 1);
}
}
}
}
TEST(Analyzer_MM_DNN, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_MM_DNN, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif
// Check the fuse status
TEST(Analyzer_MM_DNN, fuse_statis) {
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
}
// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
TEST(Analyzer_MM_DNN, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_MM_DNN, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
// Compare Deterministic result
TEST(Analyzer_MM_DNN, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle