You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
5.5 KiB
175 lines
5.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
using contrib::AnalysisConfig;
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<int64_t>> query, title;
|
|
std::vector<size_t> lod1, lod2;
|
|
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
: batch_size(batch_size) {
|
|
Load(path);
|
|
}
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
size_t batch_end = batch_iter + batch_size;
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
if (batch_end <= query.size()) {
|
|
GetInputPerBatch(query, &data.query, &data.lod1, batch_iter, batch_end);
|
|
GetInputPerBatch(title, &data.title, &data.lod2, batch_iter, batch_end);
|
|
}
|
|
batch_iter += batch_size;
|
|
return data;
|
|
}
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, '\t', &data);
|
|
// load query data
|
|
std::vector<int64_t> query_data;
|
|
split_to_int64(data[0], ' ', &query_data);
|
|
// load title data
|
|
std::vector<int64_t> title_data;
|
|
split_to_int64(data[1], ' ', &title_data);
|
|
query.push_back(std::move(query_data));
|
|
title.push_back(std::move(title_data));
|
|
}
|
|
num_samples = num_lines;
|
|
}
|
|
};
|
|
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
int batch_size) {
|
|
PaddleTensor lod_query_tensor, lod_title_tensor;
|
|
lod_query_tensor.name = "left";
|
|
lod_title_tensor.name = "right";
|
|
auto one_batch = data->NextBatch();
|
|
// assign data
|
|
TensorAssignData<int64_t>(&lod_query_tensor, one_batch.query, one_batch.lod1);
|
|
TensorAssignData<int64_t>(&lod_title_tensor, one_batch.title, one_batch.lod2);
|
|
// Set inputs.
|
|
input_slots->assign({lod_query_tensor, lod_title_tensor});
|
|
for (auto &tensor : *input_slots) {
|
|
tensor.dtype = PaddleDType::INT64;
|
|
}
|
|
}
|
|
|
|
void SetConfig(contrib::AnalysisConfig *cfg) {
|
|
cfg->SetModel(FLAGS_infer_model);
|
|
cfg->DisableGpu();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SwitchIrOptim();
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
|
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
void profile(bool use_mkldnn = false) {
|
|
contrib::AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
std::vector<PaddleTensor> outputs;
|
|
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
PADDLE_ENFORCE_EQ(outputs.size(), 2UL);
|
|
for (auto &output : outputs) {
|
|
size_t size = GetSize(output);
|
|
PADDLE_ENFORCE_GT(size, 0);
|
|
float *result = static_cast<float *>(output.data.data());
|
|
// output is probability, which is in (-1, 1).
|
|
for (size_t i = 0; i < size; i++) {
|
|
EXPECT_GT(result[i], -1);
|
|
EXPECT_LT(result[i], 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Analyzer_MM_DNN, profile) { profile(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_MM_DNN, profile_mkldnn) { profile(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_MM_DNN, fuse_statis) {
|
|
contrib::AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(
|
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
void compare(bool use_mkldnn = false) {
|
|
contrib::AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
TEST(Analyzer_MM_DNN, compare) { compare(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_MM_DNN, compare_mkldnn) { compare(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_MM_DNN, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|