You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc

173 lines
5.9 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
struct DataRecord {
std::vector<std::vector<int64_t>> title1, title2, title3, l1;
std::vector<size_t> lod1, lod2, lod3, l1_lod;
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= title1.size()) {
GetInputPerBatch(title1, &data.title1, &data.lod1, batch_iter, batch_end);
GetInputPerBatch(title2, &data.title2, &data.lod2, batch_iter, batch_end);
GetInputPerBatch(title3, &data.title3, &data.lod3, batch_iter, batch_end);
GetInputPerBatch(l1, &data.l1, &data.l1_lod, batch_iter, batch_end);
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
// load title1 data
std::vector<int64_t> title1_data;
split_to_int64(data[0], ' ', &title1_data);
// load title2 data
std::vector<int64_t> title2_data;
split_to_int64(data[1], ' ', &title2_data);
// load title3 data
std::vector<int64_t> title3_data;
split_to_int64(data[2], ' ', &title3_data);
// load l1 data
std::vector<int64_t> l1_data;
split_to_int64(data[3], ' ', &l1_data);
title1.push_back(std::move(title1_data));
title2.push_back(std::move(title2_data));
title3.push_back(std::move(title3_data));
l1.push_back(std::move(l1_data));
}
num_samples = num_lines;
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor title1_tensor, title2_tensor, title3_tensor, l1_tensor;
title1_tensor.name = "title1";
title2_tensor.name = "title2";
title3_tensor.name = "title3";
l1_tensor.name = "l1";
auto one_batch = data->NextBatch();
// assign data
TensorAssignData<int64_t>(&title1_tensor, one_batch.title1, one_batch.lod1);
TensorAssignData<int64_t>(&title2_tensor, one_batch.title2, one_batch.lod2);
TensorAssignData<int64_t>(&title3_tensor, one_batch.title3, one_batch.lod3);
TensorAssignData<int64_t>(&l1_tensor, one_batch.l1, one_batch.l1_lod);
// Set inputs.
input_slots->assign({title1_tensor, title2_tensor, title3_tensor, l1_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
for (int bid = 0; bid < epoch; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
(*inputs).emplace_back(input_slots);
}
}
// Easy for profiling independently.
TEST(Analyzer_seq_conv1, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
// the first inference result
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
size_t size = GetSize(outputs[0]);
PADDLE_ENFORCE_GT(size, 0);
float *result = static_cast<float *>(outputs[0].data.data());
// output is probability, which is in (0, 1).
for (size_t i = 0; i < size; i++) {
EXPECT_GT(result[i], 0);
EXPECT_LT(result[i], 1);
}
}
}
// Check the fuse status
TEST(Analyzer_seq_conv1, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
ASSERT_TRUE(fuse_statis.count("seqconv_eltadd_relu_fuse"));
EXPECT_EQ(fuse_statis.at("fc_fuse"), 2);
EXPECT_EQ(fuse_statis.at("seqconv_eltadd_relu_fuse"), 6);
EXPECT_EQ(num_ops, 32);
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_conv1, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_seq_conv1, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle