You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
340 lines
11 KiB
340 lines
11 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
// diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1
|
|
static const char out_var_name[] = "reduce_sum_0.tmp_0";
|
|
|
|
// for diff: 154, for speed 111
|
|
constexpr int num_slots = 154;
|
|
|
|
struct OneSlotInBatch {
|
|
std::string name;
|
|
std::vector<std::vector<float>> data;
|
|
std::vector<int> shape;
|
|
std::vector<size_t> lod;
|
|
};
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<OneSlotInBatch>> batched_data;
|
|
std::map<std::string, std::vector<std::vector<float>>> datasets;
|
|
size_t batch_iter{0}, num_samples; // total number of samples
|
|
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1) {
|
|
Load(path);
|
|
Prepare(batch_size);
|
|
}
|
|
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, '\t', &data);
|
|
std::vector<float> slot_data;
|
|
split_to_float(data[1], ' ', &slot_data);
|
|
std::string name = data[0];
|
|
PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0,
|
|
"line %d, %s should be divisible", num_lines, name);
|
|
datasets[name].emplace_back(std::move(slot_data));
|
|
}
|
|
num_samples = num_lines / num_slots;
|
|
PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
|
|
"num samples should be divisible");
|
|
PADDLE_ENFORCE_GT(num_samples, 0);
|
|
}
|
|
|
|
void Prepare(int bs) {
|
|
for (auto it = datasets.begin(); it != datasets.end(); ++it) {
|
|
PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
|
|
"size of each slot should be equal");
|
|
}
|
|
size_t num_batches = num_samples / bs;
|
|
EXPECT_GT(num_batches, 0);
|
|
batched_data.resize(num_batches);
|
|
for (auto &one_batch : batched_data) {
|
|
one_batch.resize(datasets.size());
|
|
size_t i = 0;
|
|
for (auto it = datasets.begin(); it != datasets.end(); ++it) {
|
|
auto &slot = one_batch[i];
|
|
slot.name = it->first;
|
|
slot.data.resize(bs);
|
|
slot.lod.resize(bs + 1);
|
|
slot.lod[0] = 0;
|
|
auto &lod = slot.lod;
|
|
auto &datas = it->second;
|
|
for (int k = 0; k < bs; ++k) {
|
|
size_t id = k + batch_iter * bs;
|
|
std::copy(datas[id].begin(), datas[id].end(),
|
|
std::back_inserter(slot.data[k]));
|
|
size_t len = datas[id].size() / 11;
|
|
PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
|
|
"%s %d size should be divisible", slot.name, id);
|
|
lod[k + 1] = lod[k] + len;
|
|
}
|
|
slot.shape.assign({static_cast<int>(lod[bs]), 11});
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::vector<OneSlotInBatch> &NextBatch() {
|
|
if (batch_iter >= batched_data.size() - 1) {
|
|
batch_iter = -1;
|
|
}
|
|
return batched_data[++batch_iter];
|
|
}
|
|
};
|
|
|
|
static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
|
|
tensor->name = slot.name + "_embed";
|
|
tensor->shape = slot.shape;
|
|
tensor->dtype = PaddleDType::FLOAT32;
|
|
tensor->lod.clear();
|
|
tensor->lod.emplace_back(slot.lod);
|
|
TensorAssignData(tensor, slot.data);
|
|
}
|
|
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
|
|
const auto &one_batch = data->NextBatch();
|
|
input_slots->resize(one_batch.size());
|
|
for (size_t i = 0; i < one_batch.size(); ++i) {
|
|
auto &slot = one_batch[i];
|
|
TensorAssignSlot(&((*input_slots)[i]), slot);
|
|
}
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
|
|
LOG(INFO) << "number of samples: "
|
|
<< data.batched_data.size() * FLAGS_batch_size;
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
PrepareInputs(&input_slots, &data);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
|
|
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
|
|
cfg->DisableGpu();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->pass_builder()->TurnOnDebug();
|
|
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
|
|
if (use_mkldnn) {
|
|
cfg->EnableMKLDNN();
|
|
}
|
|
}
|
|
|
|
void profile(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg, use_mkldnn);
|
|
|
|
std::vector<PaddleTensor> outputs;
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
}
|
|
|
|
TEST(Analyzer_seq_pool1, profile) { profile(); }
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
TEST(Analyzer_seq_pool1, compare) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_seq_pool1, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
void analysis_fuse_statis(bool use_zerocopy) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
cfg.SwitchUseFeedFetchOps(!use_zerocopy);
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse"));
|
|
ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
|
|
EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
|
|
EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2);
|
|
EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2);
|
|
LOG(INFO) << "num_ops: " << num_ops;
|
|
EXPECT_EQ(num_ops, 171);
|
|
}
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_seq_pool1, fuse_statis) { analysis_fuse_statis(false); }
|
|
|
|
void PrepareZeroCopyInputs(
|
|
const std::unique_ptr<PaddlePredictor> &predictor,
|
|
std::vector<std::unique_ptr<ZeroCopyTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
// only feed one batch
|
|
const auto &one_batch = data.NextBatch();
|
|
inputs->clear();
|
|
for (size_t i = 0; i < one_batch.size(); ++i) {
|
|
auto &slot = one_batch[i];
|
|
auto tensor = predictor->GetInputTensor(slot.name + "_embed");
|
|
tensor->Reshape(slot.shape);
|
|
tensor->SetLoD({slot.lod});
|
|
ZeroCopyTensorAssignData<float>(tensor.get(), slot.data);
|
|
inputs->emplace_back(std::move(tensor));
|
|
}
|
|
}
|
|
|
|
// return the output values
|
|
std::vector<float> zerocopy_profile(int repeat_times) {
|
|
AnalysisConfig config;
|
|
SetConfig(&config);
|
|
config.SwitchUseFeedFetchOps(false);
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
|
|
std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
|
|
PrepareZeroCopyInputs(predictor, &inputs);
|
|
auto output_tensor = predictor->GetOutputTensor(out_var_name);
|
|
Timer timer;
|
|
LOG(INFO) << "Warm up run...";
|
|
timer.tic();
|
|
predictor->ZeroCopyRun();
|
|
PrintTime(FLAGS_batch_size, 1, 1, 0, timer.toc(), 1);
|
|
if (FLAGS_profile) {
|
|
paddle::platform::ResetProfiler();
|
|
}
|
|
LOG(INFO) << "Run " << repeat_times << " times...";
|
|
timer.tic();
|
|
for (int i = 0; i < repeat_times; i++) {
|
|
predictor->ZeroCopyRun();
|
|
}
|
|
PrintTime(FLAGS_batch_size, repeat_times, 1, 0, timer.toc() / repeat_times,
|
|
1);
|
|
|
|
LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
|
|
PaddlePlace place;
|
|
int output_size{0};
|
|
auto *pdata = output_tensor->data<float>(&place, &output_size);
|
|
std::vector<float> res(output_size);
|
|
for (int i = 0; i < output_size; ++i) {
|
|
res[i] = pdata[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TEST(Analyzer_seq_pool1, zerocopy_profile) { zerocopy_profile(FLAGS_repeat); }
|
|
|
|
TEST(Analyzer_seq_pool1, zerocopy_profile_threads) {
|
|
AnalysisConfig config;
|
|
SetConfig(&config);
|
|
config.SwitchUseFeedFetchOps(false);
|
|
|
|
auto base_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
|
|
double total_time_of_threads{0};
|
|
std::vector<std::thread> threads;
|
|
|
|
for (int tid = 0; tid < FLAGS_num_threads; tid++) {
|
|
threads.emplace_back([&, tid] {
|
|
// To ensure the thread binding correctly,
|
|
// please clone inside the threadpool.
|
|
auto predictor = base_predictor->Clone();
|
|
std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
|
|
PrepareZeroCopyInputs(predictor, &inputs);
|
|
auto output_tensor = predictor->GetOutputTensor(out_var_name);
|
|
Timer timer;
|
|
double total_time{0};
|
|
|
|
LOG(INFO) << "Warm up run...";
|
|
timer.tic();
|
|
predictor->ZeroCopyRun();
|
|
PrintTime(FLAGS_batch_size, 1, FLAGS_num_threads, tid, timer.toc(), 1);
|
|
if (FLAGS_profile) {
|
|
paddle::platform::ResetProfiler();
|
|
}
|
|
int repeat_times = FLAGS_repeat;
|
|
LOG(INFO) << "Run " << repeat_times << " times...";
|
|
timer.tic();
|
|
|
|
for (int i = 0; i < repeat_times; i++) {
|
|
predictor->ZeroCopyRun();
|
|
}
|
|
total_time += timer.toc();
|
|
total_time_of_threads += total_time;
|
|
|
|
LOG(INFO) << "thread time: " << total_time / repeat_times;
|
|
});
|
|
}
|
|
|
|
for (auto &t : threads) {
|
|
t.join();
|
|
}
|
|
|
|
LOG(INFO) << "average time: "
|
|
<< total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
|
|
}
|
|
|
|
TEST(Analyzer_seq_pool1, zerocopy_fuse_statis) { analysis_fuse_statis(true); }
|
|
|
|
TEST(Analyzer_seq_pool1, zerocopy_compare_native) {
|
|
AnalysisConfig config;
|
|
SetConfig(&config);
|
|
config.SwitchUseFeedFetchOps(true);
|
|
auto predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
|
|
std::vector<PaddleTensor> native_outputs;
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
ASSERT_TRUE(predictor->Run(input_slots_all[0], &native_outputs));
|
|
EXPECT_EQ(native_outputs.size(), 1UL);
|
|
|
|
auto zerocopy_output = zerocopy_profile(1);
|
|
EXPECT_EQ(zerocopy_output.size() * sizeof(float),
|
|
native_outputs.front().data.length());
|
|
auto *native_data = static_cast<float *>(native_outputs.front().data.data());
|
|
for (size_t i = 0; i < zerocopy_output.size(); ++i) {
|
|
EXPECT_LT(
|
|
std::fabs((zerocopy_output[i] - native_data[i]) / zerocopy_output[i]),
|
|
1e-3);
|
|
}
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|