You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_learning_rate_schedule...

633 lines
24 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import copy
import math
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
import paddle.fluid.core as core
def exponential_decay(learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False):
exponent = global_step / decay_steps
if staircase:
exponent = math.floor(exponent)
return learning_rate * decay_rate**exponent
def natural_exp_decay(learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False):
exponent = float(global_step) / float(decay_steps)
if staircase:
exponent = math.floor(exponent)
return learning_rate * math.exp(-1 * decay_rate * exponent)
def inverse_time_decay(learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False):
temp = float(global_step) / float(decay_steps)
if staircase:
temp = math.floor(temp)
return learning_rate / (1 + decay_rate * temp)
def polynomial_decay(learning_rate,
global_step,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False):
if cycle:
div = math.ceil(global_step / float(decay_steps))
if div == 0:
div = 1
decay_steps = decay_steps * div
else:
global_step = min(global_step, decay_steps)
return (learning_rate - end_learning_rate) * \
((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate
def piecewise_decay(global_step, boundaries, values):
assert len(boundaries) + 1 == len(values)
for i in range(len(boundaries)):
if global_step < boundaries[i]:
return values[i]
return values[len(values) - 1]
def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
cur_epoch = math.floor(global_step / step_each_epoch)
decayed_lr = learning_rate * 0.5 * (
math.cos(cur_epoch * math.pi / epochs) + 1)
return decayed_lr
def noam_decay(global_step, d_model, warmup_steps, learning_rate=1.0):
a = math.pow(global_step, -0.5)
b = math.pow(warmup_steps, -1.5) * global_step
decayed_lr = learning_rate * math.pow(d_model, -0.5) * min(a, b)
return decayed_lr
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
linear_step = end_lr - start_lr
decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
return decayed_lr
def multi_step_decay(global_step, learning_rate, milestones, decay_rate=0.1):
for i in range(len(milestones)):
if global_step < milestones[i]:
return learning_rate * math.pow(decay_rate, i)
return learning_rate * math.pow(decay_rate, len(milestones))
def step_decay(global_step, learning_rate, step_size, decay_rate=0.1):
return learning_rate * math.pow(decay_rate, global_step // step_size)
def lambda_decay(global_step, learning_rate, lr_lambda):
return learning_rate * lr_lambda(global_step)
class TestLearningRateDecayDygraph(unittest.TestCase):
def test_LR_state_dict(self):
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [3, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
Exponential_scheduler = fluid.dygraph.ExponentialDecay(
learning_rate=0.1,
decay_steps=10000,
decay_rate=0.5,
staircase=True)
Step_scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
Reducelr_scheduler = fluid.dygraph.ReduceLROnPlateau(
learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3)
adam1 = fluid.optimizer.Adam(
learning_rate=Exponential_scheduler,
parameter_list=linear.parameters())
adam2 = fluid.optimizer.Adam(
learning_rate=Step_scheduler,
parameter_list=linear.parameters())
adam3 = fluid.optimizer.Adam(
learning_rate=Reducelr_scheduler,
parameter_list=linear.parameters())
print(adam3.state_dict())
for epoch in range(10):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
loss.backward()
adam1.minimize(loss)
adam2.minimize(loss)
adam3.minimize(loss)
linear.clear_gradients()
Step_scheduler.epoch()
Reducelr_scheduler.step(loss)
fluid.dygraph.save_dygraph(linear.state_dict(), "save_path")
Exponential_scheduler_test = fluid.dygraph.ExponentialDecay(
learning_rate=0.1,
decay_steps=10000,
decay_rate=0.5,
staircase=True)
Step_scheduler_test = fluid.dygraph.StepDecay(0.5, step_size=3)
Reducelr_scheduler_test = fluid.dygraph.ReduceLROnPlateau(
learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3)
fluid.dygraph.save_dygraph(adam1.state_dict(), "save_path")
_, opt_state = fluid.dygraph.load_dygraph("save_path")
adam_test = fluid.optimizer.Adam(
learning_rate=Exponential_scheduler_test,
parameter_list=linear.parameters())
adam_test.set_dict(opt_state)
self.assertEqual(adam_test._learning_rate.step_num,
adam1._learning_rate.step_num,
"epoch_num is different before and after set_dict")
fluid.dygraph.save_dygraph(adam2.state_dict(), "save_path")
_, opt_state = fluid.dygraph.load_dygraph("save_path")
adam_test = fluid.optimizer.Adam(
learning_rate=Step_scheduler_test,
parameter_list=linear.parameters())
adam_test.set_dict(opt_state)
self.assertEqual(adam_test._learning_rate.epoch_num,
adam2._learning_rate.epoch_num,
"epoch_num is different before and after set_dict")
self.assertEqual(
adam_test._learning_rate(),
adam2._learning_rate(),
"current learning rate is different before and after set_dict")
fluid.dygraph.save_dygraph(adam3.state_dict(), "save_path")
_, opt_state = fluid.dygraph.load_dygraph("save_path")
adam_test = fluid.optimizer.Adam(
learning_rate=Reducelr_scheduler_test,
parameter_list=linear.parameters())
adam_test.set_dict(opt_state)
self.assertEqual(adam_test._learning_rate.best_loss,
adam3._learning_rate.best_loss.numpy()[0],
"best_loss is different before and after set_dict")
self.assertEqual(
adam_test._learning_rate.cooldown_counter,
adam3._learning_rate.cooldown_counter,
"cooldown_counter is different before and after set_dict")
self.assertEqual(
adam_test._learning_rate.num_bad_epochs,
adam3._learning_rate.num_bad_epochs,
"num_bad_epochs is different before and after set_dict")
self.assertEqual(adam_test._learning_rate.epoch_num,
adam3._learning_rate.epoch_num,
"epoch is different before and after set_dict")
self.assertEqual(
adam_test._learning_rate(),
adam3._learning_rate(),
"current learning rate is different before and after set_dict")
def test_NoamDecay(self):
with fluid.dygraph.guard():
d_model = 0.01
warmup_steps = 200
learning_rate = 2.0
lr = fluid.layers.noam_decay(d_model, warmup_steps, learning_rate)
for step in range(5):
step += 1
right_result = noam_decay(step, d_model, warmup_steps,
learning_rate)
fluid_result = lr()
self.assertAlmostEqual(
right_result,
fluid_result[0],
msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
format(step, right_result, fluid_result[0]))
def test_LinearLrWarmup(self):
with fluid.dygraph.guard():
lr = fluid.layers.polynomial_decay(
learning_rate=1.0,
decay_steps=10,
end_learning_rate=0.0,
power=1.0)
lr = fluid.layers.linear_lr_warmup(
learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0)
right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
for i in range(5):
t = lr()
self.assertTrue(
np.allclose((t.numpy())[0].item(), right_result[i]))
with self.assertRaises(TypeError):
lr = fluid.layers.linear_lr_warmup(
learning_rate="fake_lr",
warmup_steps=2,
start_lr=0.0,
end_lr=1.0)
def test_MultiStepDecay(self):
with fluid.dygraph.guard():
learning_rate = 0.5
milestones = [2, 4, 8]
decay_rate = 0.2
linear = fluid.dygraph.Linear(10, 10)
scheduler = fluid.dygraph.MultiStepDecay(learning_rate, milestones,
decay_rate)
adam = fluid.optimizer.AdamOptimizer(
learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(10):
right_result = multi_step_decay(epoch, learning_rate,
milestones, decay_rate)
fluid_result = adam.current_step_lr()
scheduler.epoch()
self.assertAlmostEqual(
right_result,
fluid_result,
msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
format(epoch, right_result, fluid_result))
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(learning_rate, [30, 50, 20],
0.1)
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
1)
with self.assertRaises(TypeError):
lr = fluid.dygraph.MultiStepDecay("test", [20, 30, 50])
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(-1, [20, 30, 50])
def test_StepDecay(self):
with fluid.dygraph.guard():
learning_rate = 0.5
step_size = 3
decay_rate = 0.2
scheduler = fluid.dygraph.StepDecay(learning_rate, step_size,
decay_rate)
for epoch in range(10):
right_result = step_decay(epoch, learning_rate, step_size,
decay_rate)
fluid_result = scheduler().numpy()[0]
scheduler.epoch()
self.assertAlmostEqual(
right_result,
fluid_result,
msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
format(epoch, right_result, fluid_result))
with self.assertRaises(TypeError):
lr = fluid.dygraph.StepDecay(learning_rate, "test", 0.1)
with self.assertRaises(ValueError):
lr = fluid.dygraph.StepDecay(learning_rate, 20, 2)
def test_LambdaDecay(self):
with fluid.dygraph.guard():
learning_rate = 0.5
lr_lambda = lambda x: 0.95**x
scheduler = fluid.dygraph.LambdaDecay(learning_rate, lr_lambda)
linear = fluid.dygraph.nn.Linear(10, 10)
adam = fluid.optimizer.Adam(
scheduler, parameter_list=linear.parameters())
for epoch in range(30):
right_result = lambda_decay(epoch, learning_rate, lr_lambda)
fluid_result = scheduler().numpy()[0]
scheduler.epoch()
self.assertAlmostEqual(
right_result,
fluid_result,
msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
format(epoch, right_result, fluid_result))
with self.assertRaises(TypeError):
lr = fluid.dygraph.LambdaDecay(learning_rate, "test")
class TestLearningRateDecay(unittest.TestCase):
def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
kwargs)
def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
kwargs):
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
decayed_lr = fluid_decay_fn(**kwargs)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
for step in range(10):
# Step of NoamDecay starts from 1.
if python_decay_fn.__name__ == 'noam_decay':
step += 1
lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
python_decayed_lr = python_decay_fn(
global_step=float(step), **kwargs)
self.assertAlmostEqual(
python_decayed_lr,
lr_val[0],
msg='Failed lr scheduler is {0}, step {1}, Python result is {2}, Fluid result is {3}'.
format(python_decay_fn.__name__,
str(step), str(python_decayed_lr), str(lr_val[0])))
def test_decay(self):
common_kwargs_true = {
"learning_rate": 1.0,
"decay_steps": 5,
"decay_rate": 0.5,
"staircase": True
}
common_kwargs_false = copy.deepcopy(common_kwargs_true)
common_kwargs_false["staircase"] = False
decay_fns = [
(exponential_decay, layers.exponential_decay, common_kwargs_true),
(exponential_decay, layers.exponential_decay, common_kwargs_false),
(natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
(natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
(inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
(inverse_time_decay, layers.inverse_time_decay,
common_kwargs_false), (polynomial_decay, layers.polynomial_decay, {
"learning_rate": 1.0,
"decay_steps": 5,
"cycle": True
}), (polynomial_decay, layers.polynomial_decay, {
"learning_rate": 1.0,
"decay_steps": 5,
"cycle": False
}), (piecewise_decay, layers.piecewise_decay, {
"boundaries": [3, 6, 9],
"values": [0.1, 0.2, 0.3, 0.4]
}), (cosine_decay, layers.cosine_decay, {
"learning_rate": 0.1,
"step_each_epoch": 100,
"epochs": 120
}), (noam_decay, layers.noam_decay, {
"d_model": 0.01,
"warmup_steps": 200,
"learning_rate": 2.0
})
]
for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
print("class=" + self.__class__.__name__ + " decay_fn=" +
py_decay_fn.__name__ + " kwargs=" + str(kwargs))
main_program = framework.Program()
startup_program = framework.Program()
with framework.program_guard(main_program, startup_program):
self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
class TestLinearWamrupLearningRateDecay(unittest.TestCase):
def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
kwargs):
main_prog = fluid.Program()
startup_prog = fluid.Program()
warmup_steps = 10
start_lr = 0.1 / 3.
end_lr = 0.1
with fluid.program_guard(main_prog, startup_prog):
decayed_lr = layers.linear_lr_warmup(
fluid_decay_fn(**kwargs), warmup_steps, start_lr, end_lr)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
for step in range(20):
# Step of NoamDecay starts from 1.
if fluid_decay_fn.__name__ == 'noam_decay':
step += 1
lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
if step < warmup_steps:
python_decayed_lr = linear_lr_warmup(
float(step), warmup_steps, start_lr, end_lr)
else:
python_decayed_lr = python_decay_fn(
global_step=float(step), **kwargs)
self.assertAlmostEqual(
python_decayed_lr,
lr_val[0],
msg='Test {0} Failed, step {1}, Python result is {2}, Fluid result is {3}'.
format(python_decay_fn.__name__,
str(step), str(python_decayed_lr), str(lr_val[0])))
class TestLinearWamrupLearningRateDecayWithScalarInput(unittest.TestCase):
def run_scalar_lr(self, place, lr, start_lr, end_lr):
main_prog = fluid.Program()
startup_prog = fluid.Program()
warmup_steps = 10
with fluid.program_guard(main_prog, startup_prog):
decayed_lr = layers.linear_lr_warmup(lr, warmup_steps, start_lr,
end_lr)
exe = fluid.Executor(place)
exe.run(startup_prog)
for step in range(20):
lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
if step < warmup_steps:
expected_lr = linear_lr_warmup(
float(step), warmup_steps, start_lr, end_lr)
else:
expected_lr = lr
self.assertAlmostEqual(
expected_lr,
lr_val[0],
msg='Test failed, step {0}, expected {1}, but got {2}'.format(
step, expected_lr, lr_val[0]))
def test_scalar_lr(self):
def run_places(lr, start_lr, end_lr):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.run_scalar_lr(p, lr, start_lr, end_lr)
# float
lr = 0.2
start_lr = 0.1 / 3.
end_lr = 0.2
run_places(lr, start_lr, end_lr)
# int end_lr
lr = 2.
start_lr = 0.1 / 3.
end_lr = 1
run_places(lr, start_lr, end_lr)
# int
lr = 1
start_lr = 0
end_lr = 1
run_places(lr, start_lr, end_lr)
def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
var_list):
def is_better(current, best, m, n):
if m == 'min' and n == 'rel':
return current < best - best * threshold
elif m == 'min' and n == 'abs':
return current < best - threshold
elif m == 'max' and n == 'rel':
return current > best + best * threshold
else: # mode == 'max' and epsilon_mode == 'abs':
return current > best + threshold
if var_list[2] > 0:
var_list[2] -= 1
return var_list[1]
if is_better(loss, var_list[0], m, n):
var_list[0] = loss
var_list[3] = 0
else:
var_list[3] += 1
if var_list[3] > patience:
var_list[2] = cooldown
var_list[3] = 0
new_lr = var_list[1] * decay_rate
var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]
return var_list[1]
class TestReduceLROnPlateauDecay(unittest.TestCase):
def test_dygraph_mode(self):
with fluid.dygraph.guard():
# the decay rate must be less than 1.0
with self.assertRaises(ValueError):
fluid.dygraph.ReduceLROnPlateau(
learning_rate=1.0, decay_rate=2.0)
# the mode must be "min" or "max"
with self.assertRaises(ValueError):
fluid.dygraph.ReduceLROnPlateau(learning_rate=1.0, mode="test")
# the threshold_mode must be "rel" or "abs"
with self.assertRaises(ValueError):
fluid.dygraph.ReduceLROnPlateau(
learning_rate=1.0, threshold_mode="test")
base_lr = 1.0
patience = 3
cooldown = 1
decay_rate = 0.5
threshold = 1e-4
linear = fluid.dygraph.Linear(10, 10)
for m, n in zip(['min', 'max', 'min', 'max'],
['rel', 'rel', 'abs', 'abs']):
kwargs = {
'learning_rate': base_lr,
'decay_rate': decay_rate,
'threshold': threshold,
'verbose': True,
'patience': patience,
'cooldown': cooldown,
'mode': m,
'threshold_mode': n,
'eps': 1e-6
}
print("class=" + fluid.dygraph.ReduceLROnPlateau.__name__ +
" kwargs=" + str(kwargs))
lr = fluid.dygraph.ReduceLROnPlateau(**kwargs)
sgd = fluid.optimizer.SGD(learning_rate=lr,
parameter_list=linear.parameters())
best = float("-10000") if m == "max" else float("10000")
expected_lr = 1.0
cooldown_counter = 0
num_bad_epochs = 0
var_list = [best, expected_lr, cooldown_counter, num_bad_epochs]
step_num = 0
epoch_num = 0
for epoch in range(30):
total_loss = 0
for batch_id in range(2):
step_num += 1
x = fluid.dygraph.to_variable(
np.array([step_num]).astype('float32'))
loss = layers.sin(x)
sgd.minimize(loss)
total_loss += loss
epoch_num += 1
# get expected lr from fluid
avg_loss = total_loss / 1
lr.step(avg_loss)
actual_lr = lr().numpy()[0]
# get expected lr form python
expected_lr = reduce_lr_on_plateau(decay_rate, threshold,
cooldown, patience, m, n,
avg_loss, var_list)
self.assertEqual(
expected_lr,
actual_lr,
msg='Failed reduce lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
format(epoch_num, expected_lr, actual_lr))
if __name__ == '__main__':
unittest.main()