You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
7.3 KiB
165 lines
7.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifndef HL_CNN_STUB_H_
|
|
#define HL_CNN_STUB_H_
|
|
|
|
#include "hl_cnn.h"
|
|
|
|
inline void hl_shrink_col2feature(const real* dataCol,
|
|
size_t channels,
|
|
size_t height,
|
|
size_t width,
|
|
size_t blockH,
|
|
size_t blockW,
|
|
size_t strideH,
|
|
size_t strideW,
|
|
size_t paddingH,
|
|
size_t paddingW,
|
|
size_t outputH,
|
|
size_t outputW,
|
|
real* dataIm,
|
|
real alpha,
|
|
real beta) {}
|
|
|
|
inline void hl_expand_feature2col(const real* dataIm,
|
|
size_t channels,
|
|
size_t height,
|
|
size_t width,
|
|
size_t blockH,
|
|
size_t blockW,
|
|
size_t strideH,
|
|
size_t strideW,
|
|
size_t paddingH,
|
|
size_t paddingW,
|
|
size_t outputH,
|
|
size_t outputW,
|
|
real* dataCol) {}
|
|
|
|
inline void hl_maxpool_forward(const int frameCnt,
|
|
const real* inputData,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooledH,
|
|
const int pooledW,
|
|
const int sizeX,
|
|
const int sizeY,
|
|
const int strideH,
|
|
const int strideW,
|
|
const int paddingH,
|
|
const int paddingW,
|
|
real* tgtData,
|
|
const int tgtStride) {}
|
|
|
|
inline void hl_maxpool_backward(const int frameCnt,
|
|
const real* inputData,
|
|
const real* outData,
|
|
const real* outGrad,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooledH,
|
|
const int pooledW,
|
|
const int sizeX,
|
|
const int sizeY,
|
|
const int strideH,
|
|
const int strideW,
|
|
const int paddingH,
|
|
const int paddingW,
|
|
real scaleA,
|
|
real scaleB,
|
|
real* targetGrad,
|
|
const int outStride) {}
|
|
|
|
inline void hl_avgpool_forward(const int frameCnt,
|
|
const real* inputData,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooledH,
|
|
const int pooledW,
|
|
const int sizeX,
|
|
const int sizeY,
|
|
const int strideH,
|
|
const int strideW,
|
|
const int paddingH,
|
|
const int paddingW,
|
|
real* tgtData,
|
|
const int tgtStride) {}
|
|
|
|
inline void hl_avgpool_backward(const int frameCnt,
|
|
const real* outGrad,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooledH,
|
|
const int pooledW,
|
|
const int sizeX,
|
|
const int sizeY,
|
|
const int strideH,
|
|
const int strideW,
|
|
int paddingH,
|
|
int paddingW,
|
|
real scaleA,
|
|
real scaleB,
|
|
real* backGrad,
|
|
const int outStride) {}
|
|
|
|
inline void hl_bilinear_forward(const real* inData,
|
|
const size_t inImgH,
|
|
const size_t inImgW,
|
|
const size_t inputH,
|
|
const size_t inputW,
|
|
real* outData,
|
|
const size_t outImgH,
|
|
const size_t outImgW,
|
|
const size_t outputH,
|
|
const size_t outputW,
|
|
const size_t numChannels,
|
|
const real ratioH,
|
|
const real ratioW) {}
|
|
|
|
inline void hl_bilinear_backward(real* inGrad,
|
|
const size_t inImgH,
|
|
const size_t inImgW,
|
|
const size_t inputH,
|
|
const size_t inputW,
|
|
const real* outGrad,
|
|
const size_t outImgH,
|
|
const size_t outImgW,
|
|
const size_t outputH,
|
|
const size_t outputW,
|
|
const size_t numChannels,
|
|
const real ratioH,
|
|
const real ratioW) {}
|
|
|
|
inline void hl_maxout_forward(const real* inData,
|
|
real* outData,
|
|
int* idData,
|
|
size_t batchSize,
|
|
size_t size,
|
|
size_t featLen,
|
|
size_t group) {}
|
|
|
|
inline void hl_maxout_backward(real* inGrad,
|
|
const real* outGrad,
|
|
const int* idData,
|
|
size_t batchSize,
|
|
size_t size,
|
|
size_t featLen,
|
|
size_t group) {}
|
|
|
|
#endif // HL_CNN_STUB_H_
|