You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
9.9 KiB
248 lines
9.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "nnpack.h"
|
|
#include "paddle/function/ConvOp.h"
|
|
|
|
DEFINE_bool(nnpack_allocate_outside,
|
|
true,
|
|
"Allocate and free workspace memory outside the NNPACK interface.");
|
|
DEFINE_int32(nnpack_num_threads,
|
|
0,
|
|
"The number of nnpack threads"
|
|
"default: 0; 0 to disable threadpool.");
|
|
|
|
namespace paddle {
|
|
|
|
nnp_convolution_algorithm get_nnp_convolution_algorithm(
|
|
const std::string& algorithm) {
|
|
if (algorithm == "auto") {
|
|
return nnp_convolution_algorithm_auto;
|
|
} else if (algorithm == "ft8x8") {
|
|
return nnp_convolution_algorithm_ft8x8;
|
|
} else if (algorithm == "ft16x16") {
|
|
return nnp_convolution_algorithm_ft16x16;
|
|
} else if (algorithm == "wt8x8") {
|
|
return nnp_convolution_algorithm_wt8x8;
|
|
} else if (algorithm == "implicit-gemm") {
|
|
return nnp_convolution_algorithm_implicit_gemm;
|
|
} else if (algorithm == "direct") {
|
|
return nnp_convolution_algorithm_direct;
|
|
} else {
|
|
return nnp_convolution_algorithm_auto;
|
|
}
|
|
}
|
|
|
|
template <DeviceType Device>
|
|
class NNPACKConvFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
|
|
transform_strategy_ = nnp_convolution_transform_strategy_compute;
|
|
nnp_status status = nnp_initialize();
|
|
CHECK_EQ(status, nnp_status_success);
|
|
workspaceBuffer_ = nullptr;
|
|
workspaceSize_ = 0;
|
|
|
|
create_nnpack_threadpool();
|
|
}
|
|
|
|
~NNPACKConvFunction() {
|
|
if (workspaceBuffer_) {
|
|
free(workspaceBuffer_);
|
|
}
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
|
check(inputs, outputs);
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
|
|
nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
|
|
nnp_padding padding = {.top = (size_t)paddingH(),
|
|
.right = (size_t)paddingW(),
|
|
.bottom = (size_t)paddingH(),
|
|
.left = (size_t)paddingW()};
|
|
nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
|
|
nnp_size outputSubsampling = {.width = (size_t)strideW(),
|
|
.height = (size_t)strideH()};
|
|
|
|
float* inputData = inputs[0].data<float>();
|
|
float* filterData = inputs[1].data<float>();
|
|
float* outputData = outputs[0].data<float>();
|
|
|
|
void* bufferPtr = nullptr;
|
|
size_t* sizePtr = nullptr;
|
|
size_t needSize;
|
|
if (FLAGS_nnpack_allocate_outside) {
|
|
if (batchSize == 1) {
|
|
nnp_status status = nnp_convolution_inference(algorithm_,
|
|
transform_strategy_,
|
|
inputChannels,
|
|
outputChannels,
|
|
inputSize,
|
|
padding,
|
|
kernelSize,
|
|
outputSubsampling,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
&needSize,
|
|
nnp_activation_identity,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr);
|
|
CHECK_EQ(status, nnp_status_success);
|
|
} else {
|
|
// only supports stride = 1
|
|
CHECK_EQ(strideH(), 1);
|
|
CHECK_EQ(strideW(), 1);
|
|
nnp_status status = nnp_convolution_output(algorithm_,
|
|
batchSize,
|
|
inputChannels,
|
|
outputChannels,
|
|
inputSize,
|
|
padding,
|
|
kernelSize,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
&needSize,
|
|
nnp_activation_identity,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr);
|
|
CHECK_EQ(status, nnp_status_success);
|
|
}
|
|
|
|
VLOG(3) << "workspace size is " << needSize;
|
|
if (needSize > workspaceSize_) {
|
|
workspaceSize_ = needSize;
|
|
if (workspaceBuffer_) {
|
|
free(workspaceBuffer_);
|
|
} else {
|
|
posix_memalign(&workspaceBuffer_, 64, needSize);
|
|
}
|
|
}
|
|
|
|
if (needSize) {
|
|
bufferPtr = workspaceBuffer_;
|
|
sizePtr = &needSize;
|
|
}
|
|
}
|
|
|
|
size_t inputOffset = inputChannels / groups_ * inputHeight * inputWidth;
|
|
size_t outputOffset = outputChannels / groups_ * outputHeight * outputWidth;
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
if (batchSize == 1) {
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
nnp_status status =
|
|
nnp_convolution_inference(algorithm_,
|
|
transform_strategy_,
|
|
inputChannels / groups_,
|
|
outputChannels / groups_,
|
|
inputSize,
|
|
padding,
|
|
kernelSize,
|
|
outputSubsampling,
|
|
inputData + inputOffset * g,
|
|
filterData + filterOffset * g,
|
|
nullptr, /* bias */
|
|
outputData + outputOffset * g,
|
|
bufferPtr,
|
|
sizePtr,
|
|
nnp_activation_identity,
|
|
nullptr,
|
|
threadpool_, /* threadpool */
|
|
nullptr);
|
|
CHECK_EQ(status, nnp_status_success);
|
|
}
|
|
} else {
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
// only supports stride = 1
|
|
CHECK_EQ(strideH(), 1);
|
|
CHECK_EQ(strideW(), 1);
|
|
nnp_status status =
|
|
nnp_convolution_output(algorithm_,
|
|
batchSize,
|
|
inputChannels / groups_,
|
|
outputChannels / groups_,
|
|
inputSize,
|
|
padding,
|
|
kernelSize,
|
|
inputData + inputOffset * g,
|
|
filterData + filterOffset * g,
|
|
nullptr, /* bias */
|
|
outputData + outputOffset * g,
|
|
bufferPtr,
|
|
sizePtr,
|
|
nnp_activation_identity,
|
|
nullptr,
|
|
threadpool_, /* threadpool */
|
|
nullptr);
|
|
CHECK_EQ(status, nnp_status_success);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void create_nnpack_threadpool() {
|
|
if (FLAGS_nnpack_num_threads && threadpool_ == nullptr) {
|
|
threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
|
|
VLOG(3) << "Number of threads "
|
|
<< pthreadpool_get_threads_count(threadpool_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
nnp_convolution_algorithm algorithm_;
|
|
nnp_convolution_transform_strategy transform_strategy_;
|
|
void* workspaceBuffer_;
|
|
size_t workspaceSize_;
|
|
static pthreadpool_t threadpool_;
|
|
};
|
|
|
|
template <DeviceType Device>
|
|
pthreadpool_t NNPACKConvFunction<Device>::threadpool_ = nullptr;
|
|
|
|
REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);
|
|
|
|
} // namespace paddle
|