You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/tests/test_hooks.cc

241 lines
8.3 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/hooks.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"
namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace memory = paddle::memory;
DECLARE_bool(sort_sum_gradient);
namespace paddle {
namespace imperative {
using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;
TEST(TestHooks, TestGradVarLeafBackwardHook) {
// 1. prepare
Tracer tracer;
std::shared_ptr<VarBase> x(new VarBase(true, "x"));
std::shared_ptr<VarBase> y(new VarBase(true, "y"));
std::shared_ptr<VarBase> out(new VarBase(true, "out"));
x->SetOverridedStopGradient(false);
y->SetOverridedStopGradient(false);
platform::CPUPlace place;
std::vector<float> src_data(10, 2.0);
std::vector<int64_t> x_dims = {2, 5};
std::vector<int64_t> y_dims = {5, 2};
auto* x_tensor = x->MutableVar()->GetMutable<framework::LoDTensor>();
auto* y_tensor = y->MutableVar()->GetMutable<framework::LoDTensor>();
x_tensor->Resize(framework::make_ddim(x_dims));
auto* mutable_x = x_tensor->mutable_data<float>(place);
memory::Copy(place, mutable_x, place, src_data.data(),
sizeof(float) * src_data.size());
y_tensor->Resize(framework::make_ddim(y_dims));
auto* mutable_y = y_tensor->mutable_data<float>(place);
memory::Copy(place, mutable_y, place, src_data.data(),
sizeof(float) * src_data.size());
var_pair x_pair = var_pair("X", vb_vector(1, x));
var_pair y_pair = var_pair("Y", vb_vector(1, y));
var_pair out_pair = var_pair("Out", vb_vector(1, out));
NameVarBaseMap ins = {x_pair, y_pair};
NameVarBaseMap outs = {out_pair};
framework::AttributeMap mul_attr_map;
mul_attr_map["use_mkldnn"] = false;
// add GradAccumulatorPostHook
auto x_var_wrapper = x->SharedVar();
x_var_wrapper->AddGradVarLeafBackwardHook(
std::unique_ptr<LambdaGradAccumulatorPostHook>(
new LambdaGradAccumulatorPostHook([=](VariableWrapper* grad) {
auto* grad_tensor =
grad->MutableVar()->GetMutable<framework::LoDTensor>();
for (int i = 0; i < grad_tensor->numel(); ++i) {
grad_tensor->mutable_data<float>(place)[i] *= 2.0;
}
})));
// 2. forward
tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
ASSERT_EQ(out->GradVarBase()->GradOpNum(), 1UL);
// 3. backward
BasicEngine engine;
engine.Init(out.get());
engine.Execute();
framework::LoDTensor x_grad;
framework::TensorCopySync(x->GradVar().Get<framework::LoDTensor>(), place,
&x_grad);
for (int i = 0; i < x_grad.numel(); ++i) {
ASSERT_EQ(x_grad.data<float>()[i], 8.0);
}
framework::LoDTensor y_grad;
framework::TensorCopySync(y->GradVar().Get<framework::LoDTensor>(), place,
&y_grad);
for (int i = 0; i < y_grad.numel(); ++i) {
ASSERT_EQ(y_grad.data<float>()[i], 4.0);
}
}
void GradVarLeafBackwardHookWithGradAccmulatedTest() {
// 1. prepare
Tracer tracer;
std::shared_ptr<VarBase> x(new VarBase(true, "x"));
std::shared_ptr<VarBase> y(new VarBase(true, "y"));
std::shared_ptr<VarBase> z(new VarBase(true, "z"));
std::shared_ptr<VarBase> out_xy(new VarBase(true, "out_xy"));
std::shared_ptr<VarBase> out_xz(new VarBase(true, "out_xz"));
std::shared_ptr<VarBase> out(new VarBase(true, "out"));
x->SetOverridedStopGradient(false);
y->SetOverridedStopGradient(false);
z->SetOverridedStopGradient(false);
platform::CPUPlace place;
std::vector<float> src_data(10, 2.0);
std::vector<int64_t> x_dims = {2, 5};
std::vector<int64_t> y_dims = {5, 2};
std::vector<int64_t> z_dims = {5, 2};
auto* x_tensor = x->MutableVar()->GetMutable<framework::LoDTensor>();
auto* y_tensor = y->MutableVar()->GetMutable<framework::LoDTensor>();
auto* z_tensor = z->MutableVar()->GetMutable<framework::LoDTensor>();
x_tensor->Resize(framework::make_ddim(x_dims));
auto* mutable_x = x_tensor->mutable_data<float>(place);
memory::Copy(place, mutable_x, place, src_data.data(),
sizeof(float) * src_data.size());
y_tensor->Resize(framework::make_ddim(y_dims));
auto* mutable_y = y_tensor->mutable_data<float>(place);
memory::Copy(place, mutable_y, place, src_data.data(),
sizeof(float) * src_data.size());
z_tensor->Resize(framework::make_ddim(z_dims));
auto* mutable_z = z_tensor->mutable_data<float>(place);
memory::Copy(place, mutable_z, place, src_data.data(),
sizeof(float) * src_data.size());
// add GradAccumulatorPostHook
auto x_var_wrapper = x->SharedVar();
x_var_wrapper->AddGradVarLeafBackwardHook(
std::unique_ptr<LambdaGradAccumulatorPostHook>(
new LambdaGradAccumulatorPostHook([=](VariableWrapper* grad) {
auto* grad_tensor =
grad->MutableVar()->GetMutable<framework::LoDTensor>();
for (int i = 0; i < grad_tensor->numel(); ++i) {
grad_tensor->mutable_data<float>(place)[i] *= 2.0;
}
})));
// 2. forward
var_pair x_pair = var_pair("X", vb_vector(1, x));
var_pair y_pair = var_pair("Y", vb_vector(1, y));
var_pair out_xy_pair = var_pair("Out", vb_vector(1, out_xy));
NameVarBaseMap ins = {x_pair, y_pair};
NameVarBaseMap outs = {out_xy_pair};
framework::AttributeMap mul_attr_map;
mul_attr_map["use_mkldnn"] = false;
tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
var_pair z_pair = var_pair("Y", vb_vector(1, z));
var_pair out_xz_pair = var_pair("Out", vb_vector(1, out_xz));
ins = {x_pair, z_pair};
outs = {out_xz_pair};
tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
var_pair xy_pair = var_pair("X", vb_vector(1, out_xy));
var_pair xz_pair = var_pair("Y", vb_vector(1, out_xz));
var_pair out_pair = var_pair("Out", vb_vector(1, out));
ins = {xy_pair, xz_pair};
outs = {out_pair};
framework::AttributeMap add_attr_map;
tracer.TraceOp("elementwise_add", ins, outs, add_attr_map, place, true);
ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
ASSERT_EQ(z->GradVarBase()->GradOpNum(), 0UL);
ASSERT_EQ(out->GradVarBase()->GradOpNum(), 1UL);
// 3. backward
BasicEngine engine;
engine.Init(out.get());
engine.Execute();
framework::LoDTensor x_grad;
framework::TensorCopySync(x->GradVar().Get<framework::LoDTensor>(), place,
&x_grad);
for (int i = 0; i < x_grad.numel(); ++i) {
ASSERT_EQ(x_grad.data<float>()[i], 16.0);
}
framework::LoDTensor y_grad;
framework::TensorCopySync(y->GradVar().Get<framework::LoDTensor>(), place,
&y_grad);
for (int i = 0; i < y_grad.numel(); ++i) {
ASSERT_EQ(y_grad.data<float>()[i], 4.0);
}
framework::LoDTensor z_grad;
framework::TensorCopySync(z->GradVar().Get<framework::LoDTensor>(), place,
&z_grad);
for (int i = 0; i < z_grad.numel(); ++i) {
ASSERT_EQ(z_grad.data<float>()[i], 4.0);
}
}
TEST(TestHooks, TestGradVarLeafBackwardHookWithGradAccmulated) {
GradVarLeafBackwardHookWithGradAccmulatedTest();
}
TEST(TestHooks, TestGradVarLeafBackwardHookWithSortedGradAccmulated) {
FLAGS_sort_sum_gradient = true;
GradVarLeafBackwardHookWithGradAccmulatedTest();
FLAGS_sort_sum_gradient = false;
}
} // namespace imperative
} // namespace paddle
USE_OP(mul);
USE_OP(mul_grad);
USE_OP(elementwise_add);
USE_OP(elementwise_add_grad);