You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							76 lines
						
					
					
						
							2.7 KiB
						
					
					
				
			
		
		
	
	
							76 lines
						
					
					
						
							2.7 KiB
						
					
					
				| # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| 
 | |
| ################################### Data Configuration ###################
 | |
| TrainData(PyData(type="py", 
 | |
|             files = "./gserver/tests/pyDataProvider/pyDataProviderList", 
 | |
|             load_data_module="pyDataProvider", 
 | |
|             load_data_object="SimpleDataProvider"))
 | |
| 
 | |
| ################################### Algorithm Configuration #############
 | |
| Settings(
 | |
|     learning_rate_decay_a = 1e-05,
 | |
|     learning_rate_decay_b = 1e-06,
 | |
|     learning_rate = 0.001,
 | |
|     batch_size = 1,
 | |
|     algorithm = 'sgd',
 | |
|     num_batches_per_send_parameter = 1,
 | |
|     num_batches_per_get_parameter = 1,
 | |
| )
 | |
| 
 | |
| ################################### Network Configuration ###############
 | |
| Layer(type = "data", name = "input1", size = 3)
 | |
| Layer(type = "data", name = "input2", size = 7)
 | |
| 
 | |
| Layer(inputs = [Input("input1", 
 | |
|                       decay_rate = 0.12, 
 | |
|                       initial_std = 0.02, 
 | |
|                       parameter_name = "_layer1_1.w"), 
 | |
|                 Input("input2", 
 | |
|                       decay_rate = 0.12, 
 | |
|                       initial_std = 0.02, 
 | |
|                       parameter_name = "_layer1_2.w"),
 | |
|                ], 
 | |
|       name = "layer1", 
 | |
|       bias = Bias(parameter_name = "_layer1.bias"), 
 | |
|       active_type = "sigmoid", 
 | |
|       type = "fc", 
 | |
|       size = 100)
 | |
| Layer(inputs = [Input("layer1", 
 | |
|                       decay_rate = 0.06, 
 | |
|                       initial_std = 0.02, 
 | |
|                       parameter_name = "_layer2.w")], 
 | |
|       name = "layer2", 
 | |
|       bias = Bias(parameter_name = "_layer2.bias"), 
 | |
|       active_type = "sigmoid", 
 | |
|       type = "fc", 
 | |
|       size = 100)
 | |
| Layer(inputs = [Input("layer2", 
 | |
|                       decay_rate = 0.02, 
 | |
|                       initial_std = 0.02, 
 | |
|                       parameter_name = "_layer_output.w")], 
 | |
|       name = "output", 
 | |
|       bias = Bias(parameter_name = "_layer_output.bias"), 
 | |
|       active_type = "softmax", 
 | |
|       type = "fc", 
 | |
|       size = 10)
 | |
| 
 | |
| Layer(type = "data", name = "label", size = 1)
 | |
| Layer(inputs = [Input("output"), Input("label")], 
 | |
|       type = "multi-class-cross-entropy", 
 | |
|       name = "cost")
 | |
| Inputs("input1", "input2", "label")
 | |
| Outputs("cost")
 |