You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							99 lines
						
					
					
						
							3.1 KiB
						
					
					
				
			
		
		
	
	
							99 lines
						
					
					
						
							3.1 KiB
						
					
					
				| # edit-mode: -*- python -*-
 | |
| # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from paddle.trainer_config_helpers import *
 | |
| 
 | |
| ######################## data source ################################
 | |
| define_py_data_sources2(
 | |
|     train_list='gserver/tests/Sequence/dummy.list',
 | |
|     test_list=None,
 | |
|     module='rnn_data_provider',
 | |
|     obj='process_unequalength_subseq')
 | |
| 
 | |
| settings(batch_size=2, learning_rate=0.01)
 | |
| ######################## network configure ################################
 | |
| dict_dim = 10
 | |
| word_dim = 8
 | |
| hidden_dim = 8
 | |
| label_dim = 2
 | |
| 
 | |
| speaker1 = data_layer(name="word1", size=dict_dim)
 | |
| speaker2 = data_layer(name="word2", size=dict_dim)
 | |
| 
 | |
| emb1 = embedding_layer(input=speaker1, size=word_dim)
 | |
| emb2 = embedding_layer(input=speaker2, size=word_dim)
 | |
| 
 | |
| 
 | |
| # This hierarchical RNN is designed to be equivalent to the simple RNN in
 | |
| # sequence_rnn_multi_unequalength_inputs.conf
 | |
| def outer_step(x1, x2):
 | |
|     index = [0]
 | |
| 
 | |
|     def inner_step(ipt):
 | |
|         index[0] += 1
 | |
|         i = index[0]
 | |
|         outer_mem = memory(name="outer_rnn_state_%d" % i, size=hidden_dim)
 | |
| 
 | |
|         def inner_step_impl(y):
 | |
|             inner_mem = memory(
 | |
|                 name="inner_rnn_state_" + y.name,
 | |
|                 size=hidden_dim,
 | |
|                 boot_layer=outer_mem)
 | |
|             out = fc_layer(
 | |
|                 input=[y, inner_mem],
 | |
|                 size=hidden_dim,
 | |
|                 act=TanhActivation(),
 | |
|                 bias_attr=True,
 | |
|                 name='inner_rnn_state_' + y.name)
 | |
|             return out
 | |
| 
 | |
|         encoder = recurrent_group(
 | |
|             step=inner_step_impl, name='inner_%d' % i, input=ipt)
 | |
|         last = last_seq(name="outer_rnn_state_%d" % i, input=encoder)
 | |
|         return encoder, last
 | |
| 
 | |
|     encoder1, sentence_last_state1 = inner_step(ipt=x1)
 | |
|     encoder2, sentence_last_state2 = inner_step(ipt=x2)
 | |
| 
 | |
|     encoder1_expand = expand_layer(
 | |
|         input=sentence_last_state1, expand_as=encoder2)
 | |
| 
 | |
|     return [encoder1_expand, encoder2]
 | |
| 
 | |
| 
 | |
| encoder1_rep, encoder2_rep = recurrent_group(
 | |
|     name="outer",
 | |
|     step=outer_step,
 | |
|     input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
 | |
|     targetInlink=emb2)
 | |
| 
 | |
| encoder1_last = last_seq(input=encoder1_rep)
 | |
| encoder1_expandlast = expand_layer(input=encoder1_last, expand_as=encoder2_rep)
 | |
| context = mixed_layer(
 | |
|     input=[
 | |
|         identity_projection(encoder1_expandlast),
 | |
|         identity_projection(encoder2_rep)
 | |
|     ],
 | |
|     size=hidden_dim)
 | |
| 
 | |
| rep = last_seq(input=context)
 | |
| prob = fc_layer(
 | |
|     size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)
 | |
| 
 | |
| outputs(
 | |
|     classification_cost(
 | |
|         input=prob, label=data_layer(
 | |
|             name="label", size=label_dim)))
 |