You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							86 lines
						
					
					
						
							2.8 KiB
						
					
					
				
			
		
		
	
	
							86 lines
						
					
					
						
							2.8 KiB
						
					
					
				| # edit-mode: -*- python -*-
 | |
| # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from paddle.trainer_config_helpers import *
 | |
| 
 | |
| ######################## data source ################################
 | |
| define_py_data_sources2(
 | |
|     train_list='gserver/tests/Sequence/dummy.list',
 | |
|     test_list=None,
 | |
|     module='rnn_data_provider',
 | |
|     obj='process_mixed')
 | |
| 
 | |
| settings(batch_size=2, learning_rate=0.01)
 | |
| ######################## network configure ################################
 | |
| dict_dim = 10
 | |
| word_dim = 2
 | |
| hidden_dim = 2
 | |
| label_dim = 2
 | |
| 
 | |
| data1 = data_layer(name="word1", size=dict_dim)
 | |
| data2 = data_layer(name="word2", size=dict_dim)
 | |
| label = data_layer(name="label", size=label_dim)
 | |
| 
 | |
| encoding = embedding_layer(input=data2, size=word_dim)
 | |
| 
 | |
| subseq = embedding_layer(input=data1, size=word_dim)
 | |
| seq = embedding_layer(input=data2, size=word_dim)
 | |
| nonseq = embedding_layer(input=label, size=word_dim)
 | |
| 
 | |
| 
 | |
| # This hierarchical RNN is designed to be equivalent to the simple RNN in
 | |
| # sequence_rnn_multi_unequalength_inputs.conf
 | |
| def outer_step(subseq, seq, nonseq, encoding):
 | |
|     outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
 | |
| 
 | |
|     def inner_step(subseq, seq, nonseq):
 | |
|         inner_mem = memory(
 | |
|             name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem)
 | |
| 
 | |
|         out = fc_layer(
 | |
|             input=[subseq, seq, nonseq, inner_mem],
 | |
|             size=hidden_dim,
 | |
|             act=TanhActivation(),
 | |
|             bias_attr=True,
 | |
|             name='inner_rnn_state')
 | |
|         return out
 | |
| 
 | |
|     decoder = recurrent_group(
 | |
|         step=inner_step, name='inner', input=[subseq, seq, nonseq])
 | |
|     last = last_seq(name="outer_rnn_state", input=decoder)
 | |
|     context = simple_attention(
 | |
|         encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last)
 | |
|     return context
 | |
| 
 | |
| 
 | |
| out = recurrent_group(
 | |
|     name="outer",
 | |
|     step=outer_step,
 | |
|     input=[
 | |
|         subseq, expand_layer(
 | |
|             seq, expand_as=subseq,
 | |
|             expand_level=ExpandLevel.FROM_SEQUENCE), expand_layer(
 | |
|                 nonseq,
 | |
|                 expand_as=subseq,
 | |
|                 expand_level=ExpandLevel.FROM_NO_SEQUENCE),
 | |
|         StaticInput(encoding)
 | |
|     ])
 | |
| 
 | |
| rep = last_seq(input=out)
 | |
| prob = fc_layer(
 | |
|     size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)
 | |
| 
 | |
| outputs(classification_cost(input=prob, label=label))
 |