You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
7.8 KiB
197 lines
7.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
|
|
|
|
#include <sys/time.h>
|
|
#include <thread> // NOLINT
|
|
|
|
#include "google/protobuf/io/coded_stream.h"
|
|
#include "google/protobuf/io/zero_copy_stream.h"
|
|
#include "paddle/fluid/framework/data_type.h"
|
|
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
|
|
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
|
|
#include "paddle/fluid/operators/detail/variable_response.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace detail {
|
|
|
|
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
|
|
const platform::DeviceContext& ctx,
|
|
::grpc::ByteBuffer* msg,
|
|
const std::string& out_name) {
|
|
using VarMsg = sendrecv::VariableMessage;
|
|
// When using GPU, need to free the copied CPU buffer
|
|
// when the ByteBuffer destroies
|
|
// TODO(typhoonzero): add unref here, if we have dependent
|
|
// parallelism execution, need to know when to free the tensor.
|
|
DestroyCallback destroy_callback = [](void* backing) {};
|
|
|
|
void* buf = malloc(1024);
|
|
void* payload = nullptr;
|
|
size_t payload_size;
|
|
ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
|
|
e.WriteString(VarMsg::kVarnameFieldNumber, name);
|
|
if (var->IsType<framework::LoDTensor>()) {
|
|
e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
|
|
} else if (var->IsType<framework::SelectedRows>()) {
|
|
e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
|
|
}
|
|
|
|
if (!out_name.empty()) {
|
|
e.WriteString(VarMsg::kOutVarnameFieldNumber, out_name);
|
|
}
|
|
switch (framework::ToVarType(var->Type())) {
|
|
case framework::proto::VarType_Type_LOD_TENSOR: {
|
|
auto tensor = var->Get<framework::LoDTensor>();
|
|
e.WriteUint64(VarMsg::kDataTypeFieldNumber,
|
|
framework::ToDataType(tensor.type()));
|
|
for (auto& dim : framework::vectorize(tensor.dims())) {
|
|
e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
|
|
}
|
|
auto lod = tensor.lod(); // std::vector<Vector<size_t>>
|
|
if (lod.size() > 0) {
|
|
e.WriteUint64(VarMsg::kLodLevelFieldNumber, lod.size());
|
|
|
|
for (auto& each : lod) {
|
|
e.WriteVarlengthBeginning(VarMsg::kLodFieldNumber,
|
|
2 + // tag + varintlength of submessage
|
|
1 + // kLodDataFieldNumber
|
|
each.size());
|
|
// auto copied from GPU
|
|
for (auto& d : each) {
|
|
e.WriteUint64(VarMsg::LodData::kLodDataFieldNumber, d);
|
|
}
|
|
}
|
|
}
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
|
|
platform::CPUPlace cpu;
|
|
auto& gpu_dev_ctx =
|
|
static_cast<const platform::CUDADeviceContext&>(ctx);
|
|
auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
|
|
payload = memory::Alloc(cpu, copy_size);
|
|
|
|
memory::Copy(cpu, payload,
|
|
boost::get<platform::CUDAPlace>(tensor.place()),
|
|
reinterpret_cast<const void*>(tensor.data<void>()),
|
|
copy_size, gpu_dev_ctx.stream());
|
|
ctx.Wait();
|
|
destroy_callback = [](void* backing) {
|
|
platform::CPUPlace cpu;
|
|
memory::Free(cpu, backing);
|
|
};
|
|
|
|
#endif
|
|
} else {
|
|
payload = tensor.data<void>();
|
|
}
|
|
payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
|
|
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
|
|
} break;
|
|
case framework::proto::VarType_Type_SELECTED_ROWS: {
|
|
// TODO(typhoonzero): selectedrows implement should not use unique_ptr
|
|
auto* slr = var->GetMutable<framework::SelectedRows>();
|
|
e.WriteUint64(VarMsg::kDataTypeFieldNumber,
|
|
framework::ToDataType(slr->value().type()));
|
|
for (auto& dim : framework::vectorize(slr->value().dims())) {
|
|
e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
|
|
}
|
|
e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0);
|
|
e.WriteUint64(VarMsg::kSlrHeightFieldNumber, slr->height());
|
|
auto* tensor = slr->mutable_value();
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
platform::CPUPlace cpu;
|
|
auto& gpu_dev_ctx =
|
|
static_cast<const platform::CUDADeviceContext&>(ctx);
|
|
auto copy_size =
|
|
tensor->numel() * framework::SizeOfType(tensor->type());
|
|
payload = memory::Alloc(cpu, copy_size);
|
|
memory::Copy(cpu, payload,
|
|
boost::get<platform::CUDAPlace>(tensor->place()),
|
|
reinterpret_cast<const void*>(tensor->data<void>()),
|
|
copy_size, gpu_dev_ctx.stream());
|
|
ctx.Wait();
|
|
destroy_callback = [](void* backing) {
|
|
platform::CPUPlace cpu;
|
|
memory::Free(cpu, backing);
|
|
};
|
|
#endif
|
|
} else {
|
|
payload = slr->mutable_value()->data<void>();
|
|
}
|
|
payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
|
|
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
|
|
} break;
|
|
default:
|
|
PADDLE_THROW("Serialize does not support type: %s",
|
|
typeid(var->Type()).name());
|
|
break;
|
|
}
|
|
// steal reference of tensor data
|
|
::grpc::Slice slices[4]; // metadata, tensor, rows meta, rows
|
|
int num_slices = 2; // only SelectedRows have rows buffer
|
|
slices[0] = ::grpc::Slice(e.size());
|
|
memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
|
|
slices[1] = ::grpc::Slice(
|
|
grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
|
|
static_cast<char*>(payload)),
|
|
::grpc::Slice::STEAL_REF);
|
|
|
|
if (framework::ToVarType(var->Type()) ==
|
|
framework::proto::VarType_Type_SELECTED_ROWS) {
|
|
auto* slr = var->GetMutable<framework::SelectedRows>();
|
|
|
|
ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
|
|
// NOTE: rows is of type int64_t
|
|
size_t rows_memory_size =
|
|
slr->rows().size() * framework::SizeOfType(typeid(int64_t));
|
|
e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
|
|
slices[2] = ::grpc::Slice(e2.size());
|
|
memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());
|
|
|
|
slices[3] = ::grpc::Slice(
|
|
grpc_slice_new_with_user_data(
|
|
const_cast<void*>(
|
|
reinterpret_cast<const void*>(slr->rows().data())),
|
|
rows_memory_size,
|
|
[](void* backing) {
|
|
// TODO(typhoonzero): add unref here, same as above.
|
|
},
|
|
const_cast<char*>(
|
|
reinterpret_cast<const char*>(slr->rows().data()))),
|
|
::grpc::Slice::STEAL_REF);
|
|
num_slices = 4;
|
|
}
|
|
|
|
::grpc::ByteBuffer tmp(&slices[0], num_slices);
|
|
msg->Swap(&tmp);
|
|
}
|
|
|
|
void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
|
|
const platform::DeviceContext& ctx,
|
|
const framework::Scope* scope,
|
|
framework::Variable** var) {
|
|
operators::detail::VariableResponse resp(scope, &ctx);
|
|
PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
|
|
*var = resp.GetVar();
|
|
}
|
|
|
|
} // namespace detail
|
|
} // namespace operators
|
|
} // namespace paddle
|