You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
5.7 KiB
185 lines
5.7 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.param_attr import ParamAttr
|
|
from paddle.fluid.regularizer import L2Decay
|
|
|
|
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
|
|
class ConvBNLayer(fluid.dygraph.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
filter_size=3,
|
|
stride=1,
|
|
groups=1,
|
|
padding=0,
|
|
act="leaky",
|
|
is_test=True):
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self.conv = Conv2D(
|
|
num_channels=ch_in,
|
|
num_filters=ch_out,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
param_attr=ParamAttr(
|
|
initializer=fluid.initializer.Normal(0., 0.02)),
|
|
bias_attr=False,
|
|
act=None)
|
|
self.batch_norm = BatchNorm(
|
|
num_channels=ch_out,
|
|
is_test=is_test,
|
|
param_attr=ParamAttr(
|
|
initializer=fluid.initializer.Normal(0., 0.02),
|
|
regularizer=L2Decay(0.)),
|
|
bias_attr=ParamAttr(
|
|
initializer=fluid.initializer.Constant(0.0),
|
|
regularizer=L2Decay(0.)))
|
|
|
|
self.act = act
|
|
|
|
def forward(self, inputs):
|
|
out = self.conv(inputs)
|
|
out = self.batch_norm(out)
|
|
if self.act == 'leaky':
|
|
out = fluid.layers.leaky_relu(x=out, alpha=0.1)
|
|
return out
|
|
|
|
|
|
class DownSample(fluid.dygraph.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
filter_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
is_test=True):
|
|
|
|
super(DownSample, self).__init__()
|
|
|
|
self.conv_bn_layer = ConvBNLayer(
|
|
ch_in=ch_in,
|
|
ch_out=ch_out,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
is_test=is_test)
|
|
self.ch_out = ch_out
|
|
|
|
def forward(self, inputs):
|
|
out = self.conv_bn_layer(inputs)
|
|
return out
|
|
|
|
|
|
class BasicBlock(fluid.dygraph.Layer):
|
|
def __init__(self, ch_in, ch_out, is_test=True):
|
|
super(BasicBlock, self).__init__()
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
ch_in=ch_in,
|
|
ch_out=ch_out,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
is_test=is_test)
|
|
self.conv2 = ConvBNLayer(
|
|
ch_in=ch_out,
|
|
ch_out=ch_out * 2,
|
|
filter_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
is_test=is_test)
|
|
|
|
def forward(self, inputs):
|
|
conv1 = self.conv1(inputs)
|
|
conv2 = self.conv2(conv1)
|
|
out = fluid.layers.elementwise_add(x=inputs, y=conv2, act=None)
|
|
return out
|
|
|
|
|
|
class LayerWarp(fluid.dygraph.Layer):
|
|
def __init__(self, ch_in, ch_out, count, is_test=True):
|
|
super(LayerWarp, self).__init__()
|
|
|
|
self.basicblock0 = BasicBlock(ch_in, ch_out, is_test=is_test)
|
|
self.res_out_list = []
|
|
for i in range(1, count):
|
|
res_out = self.add_sublayer(
|
|
"basic_block_%d" % (i),
|
|
BasicBlock(
|
|
ch_out * 2, ch_out, is_test=is_test))
|
|
self.res_out_list.append(res_out)
|
|
self.ch_out = ch_out
|
|
|
|
def forward(self, inputs):
|
|
y = self.basicblock0(inputs)
|
|
for basic_block_i in self.res_out_list:
|
|
y = basic_block_i(y)
|
|
return y
|
|
|
|
|
|
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
|
|
|
|
|
|
class DarkNet53_conv_body(fluid.dygraph.Layer):
|
|
def __init__(self, ch_in=3, is_test=True):
|
|
super(DarkNet53_conv_body, self).__init__()
|
|
self.stages = DarkNet_cfg[53]
|
|
self.stages = self.stages[0:5]
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
ch_in=ch_in,
|
|
ch_out=32,
|
|
filter_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
is_test=is_test)
|
|
|
|
self.downsample0 = DownSample(ch_in=32, ch_out=32 * 2, is_test=is_test)
|
|
self.darknet53_conv_block_list = []
|
|
self.downsample_list = []
|
|
ch_in = [64, 128, 256, 512, 1024]
|
|
for i, stage in enumerate(self.stages):
|
|
conv_block = self.add_sublayer(
|
|
"stage_%d" % (i),
|
|
LayerWarp(
|
|
int(ch_in[i]), 32 * (2**i), stage, is_test=is_test))
|
|
self.darknet53_conv_block_list.append(conv_block)
|
|
for i in range(len(self.stages) - 1):
|
|
downsample = self.add_sublayer(
|
|
"stage_%d_downsample" % i,
|
|
DownSample(
|
|
ch_in=32 * (2**(i + 1)),
|
|
ch_out=32 * (2**(i + 2)),
|
|
is_test=is_test))
|
|
self.downsample_list.append(downsample)
|
|
|
|
def forward(self, inputs):
|
|
|
|
out = self.conv0(inputs)
|
|
out = self.downsample0(out)
|
|
blocks = []
|
|
for i, conv_block_i in enumerate(self.darknet53_conv_block_list):
|
|
out = conv_block_i(out)
|
|
blocks.append(out)
|
|
if i < len(self.stages) - 1:
|
|
out = self.downsample_list[i](out)
|
|
return blocks[-1:-4:-1]
|