You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_inverse_op.py

185 lines
6.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle
from op_test import OpTest
class TestInverseOp(OpTest):
def config(self):
self.matrix_shape = [10, 10]
self.dtype = "float64"
def setUp(self):
self.op_type = "inverse"
self.config()
np.random.seed(123)
mat = np.random.random(self.matrix_shape).astype(self.dtype)
inverse = np.linalg.inv(mat)
self.inputs = {'Input': mat}
self.outputs = {'Output': inverse}
def test_check_output(self):
self.check_output()
def test_grad(self):
self.check_grad(['Input'], 'Output')
class TestInverseOpBatched(TestInverseOp):
def config(self):
self.matrix_shape = [8, 4, 4]
self.dtype = "float64"
class TestInverseOpLarge(TestInverseOp):
def config(self):
self.matrix_shape = [32, 32]
self.dtype = "float64"
def test_grad(self):
self.check_grad(['Input'], 'Output', max_relative_error=1e-6)
class TestInverseOpFP32(TestInverseOp):
def config(self):
self.matrix_shape = [10, 10]
self.dtype = "float32"
def test_grad(self):
self.check_grad(['Input'], 'Output', max_relative_error=1e-2)
class TestInverseOpBatchedFP32(TestInverseOpFP32):
def config(self):
self.matrix_shape = [8, 4, 4]
self.dtype = "float32"
class TestInverseOpLargeFP32(TestInverseOpFP32):
def config(self):
self.matrix_shape = [32, 32]
self.dtype = "float32"
class TestInverseAPI(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_static_result(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[4, 4], dtype="float64")
result = paddle.inverse(x=input)
input_np = np.random.random([4, 4]).astype("float64")
result_np = np.linalg.inv(input_np)
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], np.linalg.inv(input_np)))
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph(self):
for place in self.places:
with fluid.dygraph.guard(place):
input_np = np.random.random([4, 4]).astype("float64")
input = fluid.dygraph.to_variable(input_np)
result = paddle.inverse(input)
self.assertTrue(
np.allclose(result.numpy(), np.linalg.inv(input_np)))
class TestInverseAPIError(unittest.TestCase):
def test_errors(self):
input_np = np.random.random([4, 4]).astype("float64")
# input must be Variable.
self.assertRaises(TypeError, paddle.inverse, input_np)
# The data type of input must be float32 or float64.
for dtype in ["bool", "int32", "int64", "float16"]:
input = fluid.data(name='input_' + dtype, shape=[4, 4], dtype=dtype)
self.assertRaises(TypeError, paddle.inverse, input)
# When out is set, the data type must be the same as input.
input = fluid.data(name='input_1', shape=[4, 4], dtype="float32")
out = fluid.data(name='output', shape=[4, 4], dtype="float64")
self.assertRaises(TypeError, paddle.inverse, input, out)
# The number of dimensions of input must be >= 2.
input = fluid.data(name='input_2', shape=[4], dtype="float32")
self.assertRaises(ValueError, paddle.inverse, input)
class TestInverseSingularAPI(unittest.TestCase):
def setUp(self):
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_static_result(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[4, 4], dtype="float64")
result = paddle.inverse(x=input)
input_np = np.zeros([4, 4]).astype("float64")
exe = fluid.Executor(place)
try:
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
except RuntimeError as ex:
print("The mat is singular")
pass
except ValueError as ex:
print("The mat is singular")
pass
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph(self):
for place in self.places:
with fluid.dygraph.guard(place):
input_np = np.ones([4, 4]).astype("float64")
input = fluid.dygraph.to_variable(input_np)
try:
result = paddle.inverse(input)
except RuntimeError as ex:
print("The mat is singular")
pass
except ValueError as ex:
print("The mat is singular")
pass
if __name__ == "__main__":
paddle.enable_static()
unittest.main()