You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
11 KiB
320 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/beam_search_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
|
|
const framework::LoDTensor &pre_scores,
|
|
framework::LoDTensor *selected_ids,
|
|
framework::LoDTensor *selected_scores) {
|
|
auto abs_lod = framework::ToAbsOffset(ids_->lod());
|
|
auto &high_level = abs_lod[lod_level_];
|
|
|
|
auto items = SelectTopBeamSizeItems(pre_ids, pre_scores);
|
|
auto selected_items = ToMap(items, high_level.back());
|
|
VLOG(3) << "selected_items:";
|
|
for (size_t i = 0; i < selected_items.size(); ++i) {
|
|
VLOG(3) << "offset:" << i;
|
|
for (auto &item : selected_items[i]) {
|
|
VLOG(3) << ItemToString(item);
|
|
}
|
|
}
|
|
|
|
PruneEndBeams(pre_ids, &selected_items);
|
|
// calculate the output tensor's height
|
|
size_t num_instances = std::accumulate(
|
|
std::begin(selected_items), std::end(selected_items), 0,
|
|
[](size_t a, std::vector<Item> &b) { return a + b.size(); });
|
|
// the output tensor shape should be [num_instances, 1]
|
|
auto dims = framework::make_ddim(
|
|
std::vector<int64_t>({static_cast<int>(num_instances), 1}));
|
|
selected_ids->Resize(dims);
|
|
selected_scores->Resize(dims);
|
|
|
|
std::map<size_t /*offset*/, std::vector<Item>> hash;
|
|
framework::LoD new_lod;
|
|
auto *ids_data = selected_ids->mutable_data<int64_t>(platform::CPUPlace());
|
|
auto *scores_data =
|
|
selected_scores->mutable_data<float>(platform::CPUPlace());
|
|
|
|
// fill in data
|
|
std::vector<size_t> low_level;
|
|
size_t low_offset = 0;
|
|
for (auto &items : selected_items) {
|
|
low_level.push_back(low_offset);
|
|
for (auto &item : items) {
|
|
ids_data[low_offset] = item.id;
|
|
scores_data[low_offset] = item.score;
|
|
low_offset++;
|
|
}
|
|
}
|
|
low_level.push_back(low_offset);
|
|
|
|
// fill lod
|
|
framework::LoD lod(2);
|
|
lod[0].assign(high_level.begin(), high_level.end());
|
|
lod[1].assign(low_level.begin(), low_level.end());
|
|
if (!framework::CheckLoD(lod)) {
|
|
PADDLE_THROW("lod %s is not right", framework::LoDToString(lod));
|
|
}
|
|
selected_ids->set_lod(lod);
|
|
selected_scores->set_lod(lod);
|
|
}
|
|
|
|
void BeamSearch::PruneEndBeams(const framework::LoDTensor &pre_ids,
|
|
std::vector<std::vector<Item>> *items) {
|
|
auto *pre_ids_data = pre_ids.data<int64_t>();
|
|
auto abs_lod = framework::ToAbsOffset(ids_->lod());
|
|
auto &high_level = abs_lod[lod_level_];
|
|
for (size_t src_idx = 0; src_idx < high_level.size() - 1; ++src_idx) {
|
|
size_t src_prefix_start = high_level[src_idx];
|
|
size_t src_prefix_end = high_level[src_idx + 1];
|
|
bool finish_flag = true;
|
|
for (size_t offset = src_prefix_start; offset < src_prefix_end; offset++) {
|
|
for (auto &item : items->at(offset)) {
|
|
if (item.id != static_cast<size_t>(end_id_) ||
|
|
pre_ids_data[offset] != end_id_) {
|
|
finish_flag = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!finish_flag) break;
|
|
}
|
|
if (finish_flag) { // all branchs of the beam (source sentence) end and
|
|
// prune this beam
|
|
for (size_t offset = src_prefix_start; offset < src_prefix_end; offset++)
|
|
items->at(offset).clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
|
|
const std::vector<std::vector<Item>> &items, size_t element_num) {
|
|
std::vector<std::vector<Item>> result;
|
|
result.resize(element_num);
|
|
for (auto &entries : items) {
|
|
for (const auto &item : entries) {
|
|
result[item.offset].push_back(item);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<std::vector<BeamSearch::Item>> BeamSearch::SelectTopBeamSizeItems(
|
|
const framework::LoDTensor &pre_ids,
|
|
const framework::LoDTensor &pre_scores) {
|
|
std::vector<std::vector<Item>> result;
|
|
std::vector<Item> items;
|
|
// for each source sentence, select the top beam_size items across all
|
|
// candidate sets.
|
|
while (NextItemSet(pre_ids, pre_scores, &items)) {
|
|
std::nth_element(
|
|
std::begin(items), std::begin(items) + beam_size_, std::end(items),
|
|
[](const Item &a, const Item &b) { return a.score > b.score; });
|
|
// prune the top beam_size items.
|
|
if (items.size() > beam_size_) {
|
|
items.resize(beam_size_);
|
|
}
|
|
result.emplace_back(items);
|
|
}
|
|
VLOG(3) << "SelectTopBeamSizeItems result size " << result.size();
|
|
for (auto &items : result) {
|
|
VLOG(3) << "item set:";
|
|
for (auto &item : items) {
|
|
VLOG(3) << ItemToString(item);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// the candidates of a source
|
|
bool BeamSearch::NextItemSet(const framework::LoDTensor &pre_ids,
|
|
const framework::LoDTensor &pre_scores,
|
|
std::vector<BeamSearch::Item> *items) {
|
|
if (sent_offset_ >= ids_->NumElements(lod_level_)) {
|
|
return false;
|
|
}
|
|
// find the current candidates
|
|
auto ids = *ids_;
|
|
auto scores = *scores_;
|
|
|
|
auto abs_lod = framework::ToAbsOffset(ids.lod());
|
|
|
|
auto *ids_data = ids.data<int64_t>();
|
|
auto *scores_data = scores.data<float>();
|
|
|
|
size_t instance_dim = 1;
|
|
for (int i = 1; i < ids.dims().size(); i++) {
|
|
instance_dim *= ids.dims()[i];
|
|
}
|
|
|
|
auto *pre_ids_data = pre_ids.data<int64_t>();
|
|
auto *pre_scores_data = pre_scores.data<float>();
|
|
items->clear();
|
|
items->reserve(framework::product(ids.dims()));
|
|
for (size_t offset = abs_lod[lod_level_][sent_offset_];
|
|
offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) {
|
|
auto pre_id = pre_ids_data[offset];
|
|
auto pre_score = pre_scores_data[offset];
|
|
if (pre_id == end_id_) {
|
|
// Allocate all probability mass to eos_id for finished branchs and the
|
|
// other candidate ids can be ignored.
|
|
items->emplace_back(offset, end_id_, pre_score);
|
|
} else {
|
|
for (size_t d = 0; d < instance_dim; d++) {
|
|
const size_t dim_offset = offset * instance_dim + d;
|
|
items->emplace_back(offset, ids_data[dim_offset],
|
|
scores_data[dim_offset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
sent_offset_++;
|
|
return true;
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &os, const BeamSearch::Item &item) {
|
|
os << "{";
|
|
os << "offset: " << item.offset << ", ";
|
|
os << "id: " << item.id << ", ";
|
|
os << "score: " << item.score << "";
|
|
os << "}";
|
|
|
|
return os;
|
|
}
|
|
|
|
std::string ItemToString(const BeamSearch::Item &item) {
|
|
std::ostringstream stream;
|
|
stream << item;
|
|
return stream.str();
|
|
}
|
|
|
|
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
// inputs and outputs stored in proto
|
|
AddInput("pre_ids",
|
|
"(LoDTensor) The LoDTensor containing the selected ids at the "
|
|
"previous step. It should be a tensor with shape (batch_size, 1) "
|
|
"and lod `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at "
|
|
"thefirst step.");
|
|
AddInput("pre_scores",
|
|
"(LoDTensor) The LoDTensor containing the accumulated "
|
|
"scores corresponding to the selected ids at the previous step.");
|
|
AddInput("ids",
|
|
"(LoDTensor) The LoDTensor containing the candidates ids. Its "
|
|
"shape should be (batch_size * beam_size, K), where K supposed to "
|
|
"be beam_size.");
|
|
AddInput("scores",
|
|
"(LoDTensor) The LodTensor containing the accumulated scores "
|
|
"corresponding to Input(ids) and its shape is the same as the "
|
|
"shape of Input(ids).");
|
|
AddOutput("selected_ids",
|
|
"A LodTensor that stores the IDs selected by beam search.");
|
|
AddOutput("selected_scores",
|
|
"A LoDTensor containing the accumulated scores corresponding to "
|
|
"Output(selected_ids).");
|
|
|
|
// Attributes stored in AttributeMap
|
|
AddAttr<int>("level", "the level of LoDTensor");
|
|
AddAttr<int>("beam_size", "beam size for beam search");
|
|
AddAttr<int>("end_id",
|
|
"the token id which indicates the end of a sequence");
|
|
|
|
AddComment(R"DOC(
|
|
This operator does the search in beams for one time step.
|
|
Specifically, it selects the top-K candidate word ids of current step from
|
|
Input(ids) according to their Input(scores) for all source sentences,
|
|
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
|
|
from the computation cell. Additionally, Input(pre_ids) and Input(pre_scores)
|
|
are the output of beam_search at previous step, they are needed for special use
|
|
to handle ended candidate translations. The paths linking prefixes and selected
|
|
candidates are organized and reserved in lod.
|
|
|
|
Note that the Input(scores) passed in should be accumulated scores, and
|
|
length penalty should be done with extra operators before calculating the
|
|
accumulated scores if needed, also suggest finding top-K before it and
|
|
using the top-K candidates following.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class BeamSearchOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
for (const std::string &arg :
|
|
std::vector<std::string>({"pre_ids", "ids", "scores"})) {
|
|
PADDLE_ENFORCE(ctx->HasInput(arg), "BeamSearch need input argument '%s'",
|
|
arg);
|
|
}
|
|
for (const std::string &arg :
|
|
std::vector<std::string>({"selected_ids", "selected_scores"})) {
|
|
PADDLE_ENFORCE(ctx->HasOutput(arg),
|
|
"BeamSearch need output argument '%s'", arg);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::OpKernelType kt = framework::OpKernelType(
|
|
framework::ToDataType(
|
|
ctx.Input<framework::LoDTensor>("pre_ids")->type()),
|
|
platform::CPUPlace());
|
|
return kt;
|
|
}
|
|
};
|
|
|
|
class BeamSearchInferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc &op_desc,
|
|
framework::BlockDesc *block) const override {
|
|
for (auto &o : op_desc.Output("selected_ids")) {
|
|
auto &selected_ids = block->FindRecursiveOrCreateVar(o);
|
|
selected_ids.SetType(framework::proto::VarType::LOD_TENSOR);
|
|
}
|
|
for (auto &o : op_desc.Output("selected_scores")) {
|
|
auto &selected_scores = block->FindRecursiveOrCreateVar(o);
|
|
selected_scores.SetType(framework::proto::VarType::LOD_TENSOR);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
|
|
ops::BeamSearchInferVarType);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
beam_search,
|
|
ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|