You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/slim/tests/test_graph.py

149 lines
5.6 KiB

# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
from __future__ import print_function
import os
import six
import numpy as np
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
paddle.enable_static()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["CPU_NUM"] = "1"
def conv_block():
img = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
return [img, label], avg_loss
class TestGraph(unittest.TestCase):
def graph_apis(self, use_cuda=False, for_ci=True):
main = fluid.Program()
startup = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, startup):
feeds, loss = conv_block()
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
graph = IrGraph(core.Graph(main.desc), for_test=False)
backup_graph = graph.clone()
self.assertEqual(len(graph.all_nodes()), len(backup_graph.all_nodes()))
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = False
build_strategy.enable_inplace = False
origin_binary = fluid.CompiledProgram(graph.graph).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
backup_binary = fluid.CompiledProgram(
backup_graph.graph).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
iters = 5
batch_size = 8
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
def _train(binary):
for _ in range(iters):
data = next(train_reader())
loss_v = exe.run(binary,
feed=feeder.feed(data),
fetch_list=[loss.name])
if not for_ci:
print('{}: {}'.format('loss', loss_v))
_train(origin_binary)
_train(backup_binary)
checkponit_dir = "checkpoint_gpu" if use_cuda else "checkpoint_cpu"
def _set_zero(var_name, scope, place):
var = scope.find_var(var_name).get_tensor()
var_array = np.zeros(var._get_dims()).astype("float32")
var.set(var_array, place)
sum_before = np.sum(
np.array(fluid.global_scope().find_var('conv2d_1.w_0').get_tensor(
)))
fluid.io._save_persistable_nodes(exe, checkponit_dir, graph)
_set_zero('conv2d_1.w_0', fluid.global_scope(), place)
set_after = np.sum(
np.array(fluid.global_scope().find_var('conv2d_1.w_0').get_tensor(
)))
self.assertEqual(set_after, 0)
fluid.io._load_persistable_nodes(exe, checkponit_dir, graph)
sum_after = np.sum(
np.array(fluid.global_scope().find_var('conv2d_1.w_0').get_tensor(
)))
self.assertEqual(sum_before, sum_after)
marked_nodes = set()
for op in graph.all_op_nodes():
if op.name().find('conv2d') > -1:
marked_nodes.add(op)
if not for_ci:
graph.draw('.', 'residual', marked_nodes)
backup_marked_nodes = set()
for op in backup_graph.all_op_nodes():
if op.name().find('conv2d') > -1:
backup_marked_nodes.add(op)
backup_graph.draw('./origin', 'backup', backup_marked_nodes)
self.assertFalse(graph.has_circle())
self.assertEqual(graph.graph_num(), 1)
nodes = graph.topology_sort()
self.assertEqual(len(nodes), len(graph.all_op_nodes()))
nodes_map = graph.build_adjacency_list()
self.assertEqual(len(nodes_map), len(graph.all_op_nodes()))
nodes_num = len(graph.all_nodes())
graph.safe_remove_nodes(marked_nodes)
self.assertEqual(len(graph.all_nodes()), nodes_num - len(marked_nodes))
def test_graph_apis_cpu(self):
self.graph_apis(use_cuda=False, for_ci=True)
def test_graph_apis_cuda(self):
if fluid.core.is_compiled_with_cuda():
self.graph_apis(use_cuda=True, for_ci=True)
if __name__ == '__main__':
unittest.main()