|
|
新手入门
|
|
|
============
|
|
|
|
|
|
.. _quick_install:
|
|
|
|
|
|
快速安装
|
|
|
++++++++
|
|
|
|
|
|
PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。
|
|
|
执行下面的命令完成快速安装:
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
pip install paddlepaddle
|
|
|
|
|
|
如果需要安装支持GPU的版本,需要执行:
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
pip install paddlepaddle-gpu
|
|
|
|
|
|
更详细的安装和编译方法参考:
|
|
|
|
|
|
.. toctree::
|
|
|
:maxdepth: 1
|
|
|
|
|
|
build_and_install/index_cn.rst
|
|
|
|
|
|
.. _quick_start:
|
|
|
|
|
|
快速开始
|
|
|
++++++++
|
|
|
|
|
|
创建一个 housing.py 并粘贴此Python代码:
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
# Initialize PaddlePaddle.
|
|
|
paddle.init(use_gpu=False, trainer_count=1)
|
|
|
|
|
|
# Configure the neural network.
|
|
|
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
|
|
|
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
|
|
|
|
|
|
# Infer using provided test data.
|
|
|
probs = paddle.infer(
|
|
|
output_layer=y_predict,
|
|
|
parameters=paddle.dataset.uci_housing.model(),
|
|
|
input=[item for item in paddle.dataset.uci_housing.test()()])
|
|
|
|
|
|
for i in xrange(len(probs)):
|
|
|
print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)
|
|
|
|
|
|
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
|
|
|
|
|
|
.. toctree::
|
|
|
:maxdepth: 1
|
|
|
|
|
|
concepts/use_concepts_cn.rst
|