You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
13 KiB
379 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/executor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/threadpool.h"
|
|
#include "paddle/fluid/operators/detail/safe_ref.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
static constexpr char kInputs[] = "inputs";
|
|
static constexpr char kParameters[] = "parameters";
|
|
static constexpr char kPlaces[] = "places";
|
|
|
|
static constexpr char kOutputs[] = "outputs";
|
|
static constexpr char kParallelScopes[] = "parallel_scopes";
|
|
|
|
static constexpr char kParallelBlock[] = "sub_block";
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
using SelectedRows = framework::SelectedRows;
|
|
|
|
static void SplitTensorAndMoveTensorToScopes(
|
|
const framework::Scope &scope, std::vector<framework::Scope *> *sub_scopes,
|
|
const std::vector<platform::Place> &places,
|
|
const std::vector<std::string> &names) {
|
|
size_t num_sub_scopes = 0;
|
|
for (auto &argu : names) {
|
|
const auto &tensor =
|
|
detail::Ref(scope.FindVar(argu),
|
|
"Cannot find variable %s in the parent scope", argu)
|
|
.Get<LoDTensor>();
|
|
auto lod_tensors = tensor.SplitLoDTensor(places);
|
|
|
|
for (auto &lod : lod_tensors) {
|
|
VLOG(3) << lod.dims();
|
|
}
|
|
if (num_sub_scopes == 0) {
|
|
num_sub_scopes = lod_tensors.size();
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(num_sub_scopes, lod_tensors.size());
|
|
}
|
|
PADDLE_ENFORCE_NE(num_sub_scopes, 0);
|
|
if (sub_scopes->size() == 0) {
|
|
sub_scopes->reserve(num_sub_scopes);
|
|
for (size_t i = 0; i < num_sub_scopes; ++i) {
|
|
sub_scopes->emplace_back(&scope.NewScope());
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < lod_tensors.size(); ++i) {
|
|
*detail::Ref(sub_scopes->at(i)->Var(argu),
|
|
"Cannot find variable in the sub-scope", argu)
|
|
.GetMutable<LoDTensor>() = lod_tensors[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void CopyOrShare(const framework::Variable &src,
|
|
const platform::Place &dst_place,
|
|
framework::Variable *dst) {
|
|
if (src.IsType<LoDTensor>()) {
|
|
if (src.Get<LoDTensor>().place() == dst_place) {
|
|
dst->GetMutable<LoDTensor>()->ShareDataWith(src.Get<LoDTensor>());
|
|
dst->GetMutable<LoDTensor>()->set_lod(src.Get<LoDTensor>().lod());
|
|
} else {
|
|
Copy(src.Get<LoDTensor>(), dst_place, dst->GetMutable<LoDTensor>());
|
|
}
|
|
} else if (src.IsType<SelectedRows>()) {
|
|
auto &src_sr = src.Get<SelectedRows>();
|
|
auto *dst_sr = dst->GetMutable<SelectedRows>();
|
|
dst_sr->set_height(src_sr.height());
|
|
if (src_sr.value().place() == dst_place) {
|
|
dst_sr->mutable_value()->ShareDataWith(src_sr.value());
|
|
dst_sr->set_rows(src_sr.rows());
|
|
} else {
|
|
Copy(src_sr.value(), dst_place, dst_sr->mutable_value());
|
|
}
|
|
} else {
|
|
PADDLE_THROW("Expect LoDTensor/SelectedRows, get %s", src.Type().name());
|
|
}
|
|
}
|
|
|
|
void WaitOnPlace(const platform::Place place) {
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(place);
|
|
dev_ctx.Wait();
|
|
}
|
|
|
|
void WaitOnPlaces(const std::vector<platform::Place> places) {
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
|
|
for (auto &place : places) {
|
|
auto &dev_ctx = *pool.Get(place);
|
|
dev_ctx.Wait();
|
|
}
|
|
}
|
|
|
|
class ParallelDoOp : public framework::OperatorBase {
|
|
public:
|
|
ParallelDoOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: framework::OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &place) const override {
|
|
// get device context from pool
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(place);
|
|
|
|
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
|
|
auto *program = block->Program();
|
|
|
|
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
|
|
|
|
auto &sub_scopes = *scope.FindVar(Output(kParallelScopes))
|
|
->GetMutable<std::vector<framework::Scope *>>();
|
|
|
|
// split input
|
|
SplitTensorAndMoveTensorToScopes(scope, &sub_scopes, places,
|
|
Inputs(kInputs));
|
|
|
|
// copy parameter
|
|
for (auto ¶m : Inputs(kParameters)) {
|
|
PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(),
|
|
"Only support parameter type as LoDTensor");
|
|
auto &src = scope.FindVar(param)->Get<LoDTensor>();
|
|
for (size_t i = 0; i < sub_scopes.size(); ++i) {
|
|
auto &place = places[i];
|
|
auto *sub_scope = sub_scopes[i];
|
|
auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>();
|
|
framework::Copy(src, place, dst);
|
|
}
|
|
}
|
|
WaitOnPlaces(places);
|
|
|
|
std::vector<std::future<void>> workers;
|
|
workers.reserve(places.size());
|
|
for (size_t place_idx = 0; place_idx < sub_scopes.size(); ++place_idx) {
|
|
auto &place = places[place_idx];
|
|
auto *cur_scope = sub_scopes[place_idx];
|
|
|
|
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
|
|
framework::Executor executor(place);
|
|
executor.Run(*program, cur_scope, block->ID(),
|
|
false /*create_local_scope*/);
|
|
}));
|
|
}
|
|
for (auto &worker : workers) {
|
|
worker.wait();
|
|
}
|
|
WaitOnPlaces(places);
|
|
|
|
// merge output
|
|
for (auto &o_name : Outputs(kOutputs)) {
|
|
std::vector<const framework::LoDTensor *> lod_tensors;
|
|
lod_tensors.reserve(sub_scopes.size());
|
|
for (auto *sub_scope : sub_scopes) {
|
|
lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get<LoDTensor>());
|
|
}
|
|
|
|
auto *lod_tensor_to_be_merged =
|
|
scope.FindVar(o_name)->GetMutable<LoDTensor>();
|
|
lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace());
|
|
}
|
|
WaitOnPlaces(places);
|
|
}
|
|
};
|
|
|
|
class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(kInputs, "").AsDuplicable();
|
|
AddInput(kParameters, "").AsDuplicable();
|
|
AddInput(kPlaces, "");
|
|
AddOutput(kOutputs, "").AsDuplicable();
|
|
AddOutput(kParallelScopes, "");
|
|
AddAttr<framework::BlockDesc *>(kParallelBlock, "");
|
|
AddComment(R"DOC(
|
|
ParallelDo Operator.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ParallelDoGradOp : public framework::OperatorBase {
|
|
public:
|
|
ParallelDoGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: framework::OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &place) const override {
|
|
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
|
|
auto *program = block->Program();
|
|
|
|
auto &sub_scopes = scope.FindVar(Input(kParallelScopes))
|
|
->Get<std::vector<framework::Scope *>>();
|
|
|
|
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
|
|
|
|
// feed output@grad
|
|
SplitTensorAndMoveTensorToScopes(
|
|
scope, const_cast<std::vector<framework::Scope *> *>(&sub_scopes),
|
|
places, Inputs(framework::GradVarName(kOutputs)));
|
|
WaitOnPlaces(places);
|
|
|
|
// exe run
|
|
std::vector<std::future<void>> workers;
|
|
for (size_t i = 0; i < sub_scopes.size(); ++i) {
|
|
auto &place = places[i];
|
|
auto *cur_scope = sub_scopes[i];
|
|
|
|
// execute
|
|
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
|
|
framework::Executor executor(place);
|
|
executor.Run(*program, cur_scope, block->ID(),
|
|
false /*create_local_scope*/);
|
|
}));
|
|
}
|
|
for (auto &worker : workers) {
|
|
worker.wait();
|
|
}
|
|
WaitOnPlaces(places);
|
|
|
|
AccumulateGrad(scope, place, sub_scopes, places);
|
|
}
|
|
|
|
void AccumulateGrad(const framework::Scope &scope,
|
|
const platform::Place &place,
|
|
const std::vector<framework::Scope *> &sub_scopes,
|
|
const platform::PlaceList &places) const {
|
|
for (auto &s : Outputs(framework::GradVarName(kParameters))) {
|
|
VLOG(3) << "Accumulating " << s;
|
|
if (s == framework::kEmptyVarName) continue;
|
|
std::string tmp_name;
|
|
auto *tmp = sub_scopes[0]->Var(&tmp_name);
|
|
|
|
for (size_t i = 1; i < sub_scopes.size(); ++i) {
|
|
CopyOrShare(*sub_scopes[i]->FindVar(s), places[0], tmp);
|
|
WaitOnPlaces(places);
|
|
|
|
auto sum_op = framework::OpRegistry::CreateOp(
|
|
"sum", {{"X", {s, tmp_name}}}, {{"Out", {s}}},
|
|
framework::AttributeMap{});
|
|
VLOG(10) << sum_op->DebugStringEx(sub_scopes[0]);
|
|
sum_op->Run(*sub_scopes[0], places[0]);
|
|
WaitOnPlace(places[0]);
|
|
}
|
|
|
|
CopyOrShare(*sub_scopes[0]->FindVar(s), place, scope.FindVar(s));
|
|
}
|
|
WaitOnPlaces(places);
|
|
}
|
|
};
|
|
|
|
std::ostream &operator<<(std::ostream &sout,
|
|
const std::vector<std::string> &strs) {
|
|
std::copy(strs.begin(), strs.end(),
|
|
std::ostream_iterator<std::string>(sout, ","));
|
|
return sout;
|
|
}
|
|
|
|
class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
virtual std::unique_ptr<framework::OpDesc> Apply() const {
|
|
auto *grad = new framework::OpDesc();
|
|
grad->SetType("parallel_do_grad");
|
|
for (auto &input_param : this->InputNames()) {
|
|
VLOG(3) << input_param;
|
|
grad->SetInput(input_param, this->Input(input_param));
|
|
if (input_param != kPlaces) {
|
|
grad->SetOutput(framework::GradVarName(input_param),
|
|
this->InputGrad(input_param, false));
|
|
}
|
|
}
|
|
auto *g_block = this->grad_block_[0];
|
|
|
|
// All variable name that needed by gradient operators
|
|
std::unordered_set<std::string> all_inputs_in_grad_blocks;
|
|
|
|
for (size_t i = 0; i < g_block->OpSize(); ++i) {
|
|
auto *op = g_block->Op(i);
|
|
for (auto &var_name : op->InputArgumentNames()) {
|
|
all_inputs_in_grad_blocks.insert(var_name);
|
|
}
|
|
}
|
|
|
|
for (auto &output_param : this->OutputNames()) {
|
|
if (output_param == kParallelScopes) {
|
|
grad->SetInput(output_param, this->Output(output_param));
|
|
grad->SetInput(framework::GradVarName(output_param),
|
|
this->Output(output_param));
|
|
} else {
|
|
grad->SetInput(output_param, this->Output(output_param));
|
|
std::vector<std::string> og_names;
|
|
for (auto &og_name : this->OutputGrad(output_param)) {
|
|
if (all_inputs_in_grad_blocks.count(og_name) != 0) {
|
|
// there are some gradient operators who need the OG. So make this
|
|
// OG as an input of parallel.do
|
|
og_names.push_back(og_name);
|
|
}
|
|
// else, there is no operator who need the OG. Do not use this OG as
|
|
// an input
|
|
}
|
|
grad->SetInput(framework::GradVarName(output_param), og_names);
|
|
}
|
|
}
|
|
grad->SetAttrMap(this->Attrs());
|
|
grad->SetBlockAttr(kParallelBlock, *grad_block_[0]);
|
|
|
|
return std::unique_ptr<framework::OpDesc>(grad);
|
|
}
|
|
};
|
|
|
|
class ParallelDoGradOpShapeInference : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInputs(kParameters));
|
|
PADDLE_ENFORCE(ctx->HasInputs(kInputs));
|
|
PADDLE_ENFORCE(ctx->HasInputs(kOutputs));
|
|
|
|
ctx->SetOutputsDim(framework::GradVarName(kParameters),
|
|
ctx->GetInputsDim(kParameters));
|
|
|
|
auto i_dims = ctx->GetInputsDim(kInputs);
|
|
auto ig_names = ctx->Outputs(framework::GradVarName(kInputs));
|
|
|
|
for (size_t i = 0; i < ig_names.size(); ++i) {
|
|
auto &ig_name = ig_names[i];
|
|
if (ig_name == framework::kEmptyVarName) {
|
|
continue;
|
|
}
|
|
|
|
ctx->SetDims({ig_name}, {i_dims[i]});
|
|
}
|
|
|
|
auto p_dims = ctx->GetInputsDim(kParameters);
|
|
auto pg_names = ctx->Outputs(framework::GradVarName(kParameters));
|
|
for (size_t i = 0; i < pg_names.size(); ++i) {
|
|
auto &pg_name = pg_names[i];
|
|
if (pg_name == framework::kEmptyVarName) {
|
|
continue;
|
|
}
|
|
ctx->SetDims({pg_name}, {p_dims[i]});
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp,
|
|
paddle::operators::ParallelDoOpProtoMaker,
|
|
paddle::operators::ParallelDoGradOpDescMaker);
|
|
REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp,
|
|
paddle::operators::ParallelDoGradOpShapeInference);
|