You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
9.0 KiB
283 lines
9.0 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNFcLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
typedef inner_product_forward fc_fwd;
|
|
typedef inner_product_backward_weights fc_bwdWgt;
|
|
typedef inner_product_backward_data fc_bwdData;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
|
|
|
|
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
|
|
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";
|
|
|
|
// output size, cat not be changed
|
|
oc_ = getSize();
|
|
oh_ = 1;
|
|
ow_ = 1;
|
|
|
|
// input size can not change in FC
|
|
iLayerSize_ = inputLayers_[0]->getSize();
|
|
CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);
|
|
|
|
// create weight
|
|
weight_ =
|
|
std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));
|
|
|
|
// create biases
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNFcLayer::convertWeightsFromPaddle() {
|
|
if (FLAGS_use_mkldnn_wgt) {
|
|
return;
|
|
}
|
|
|
|
if (hasInitedWgt_) {
|
|
return;
|
|
}
|
|
|
|
// The weight_ is transposed from initial paddle weight
|
|
MatrixPtr paddleWgt = Matrix::create(
|
|
weight_->getW()->getData(), iLayerSize_, oc_, false, false);
|
|
|
|
// TODO(TJ): remove this print when do not need differ weights
|
|
std::ostringstream ostr;
|
|
paddleWgt->print(ostr);
|
|
VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str();
|
|
|
|
// The mkldnn weight is transposed from initial paddle matrix
|
|
MatrixPtr paddleWgtT;
|
|
paddleWgt->transpose(paddleWgtT, true);
|
|
weight_->getW()->copyFrom(*paddleWgtT);
|
|
hasInitedWgt_ = true;
|
|
}
|
|
|
|
void MKLDNNFcLayer::convertWeightsToPaddle() {
|
|
MatrixPtr dnnWgt = weight_->getW();
|
|
MatrixPtr paddleWgt;
|
|
dnnWgt->transpose(paddleWgt, true);
|
|
|
|
// copy paddle weight and override on weight_
|
|
MatrixPtr dnnWgtT = Matrix::create(
|
|
dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false);
|
|
dnnWgtT->copyFrom(*paddleWgt);
|
|
}
|
|
|
|
void MKLDNNFcLayer::reshape() {
|
|
const Argument& input = getInput(0);
|
|
int batchSize = input.getBatchSize();
|
|
if (bs_ == batchSize) {
|
|
return;
|
|
}
|
|
bs_ = batchSize;
|
|
ih_ = input.getFrameHeight();
|
|
iw_ = input.getFrameWidth();
|
|
if (ih_ == 0) {
|
|
ih_ = 1;
|
|
}
|
|
if (iw_ == 0) {
|
|
iw_ = 1;
|
|
}
|
|
hasSpatial_ = true;
|
|
if (ih_ == 1 && iw_ == 1) {
|
|
hasSpatial_ = false;
|
|
}
|
|
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
|
|
ic_ = iLayerSize_ / (ih_ * iw_);
|
|
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
|
|
CHECK_EQ(size_t(oc_), getSize());
|
|
printSizeInfo();
|
|
|
|
// reset output
|
|
output_.setFrameHeight(oh_);
|
|
output_.setFrameWidth(ow_);
|
|
resetOutput(bs_, oc_);
|
|
|
|
// reset mkldnn forward
|
|
resetFwd();
|
|
needResetBwd_ = true;
|
|
|
|
convertWeightsFromPaddle();
|
|
}
|
|
|
|
void MKLDNNFcLayer::resetFwd() {
|
|
bool hasBias = biases_ && biases_->getW();
|
|
real* iData = getInputValue(0)->getData();
|
|
real* oData = getOutputValue()->getData();
|
|
real* wData = weight_->getW()->getData();
|
|
real* bData = hasBias ? biases_->getW()->getData() : NULL;
|
|
|
|
// TODO(TJ): below create should be covered in MkldnnMatrix
|
|
// create memory desc
|
|
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
|
|
: createMD({bs_, ic_}, format::nc);
|
|
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
|
|
: createMD({oc_, ic_}, format::oi);
|
|
memory::desc bMD = bData != NULL ? createMD({oc_}, format::x)
|
|
: createMD({}, format::format_undef);
|
|
memory::desc oMD = createMD({bs_, oc_}, format::nc);
|
|
|
|
// create memory primitive desc and memory self
|
|
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
|
|
wgtVal_.reset(new memory(memory::primitive_desc(wMD, engine_), wData));
|
|
outVal_.reset(new memory(memory::primitive_desc(oMD, engine_), oData));
|
|
|
|
prop_kind pk = prop_kind::forward;
|
|
fc_fwd::desc fwdDesc = bData != NULL ? fc_fwd::desc(pk, iMD, wMD, bMD, oMD)
|
|
: fc_fwd::desc(pk, iMD, wMD, oMD);
|
|
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
|
|
|
|
if (bData != NULL) {
|
|
biasVal_.reset(new memory(memory::primitive_desc(bMD, engine_), bData));
|
|
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
|
|
} else {
|
|
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
|
|
}
|
|
pipelineFwd_.clear();
|
|
pipelineFwd_.push_back(*fwd_);
|
|
}
|
|
|
|
void MKLDNNFcLayer::resetBwd() {
|
|
if (!needResetBwd_) {
|
|
return;
|
|
}
|
|
needResetBwd_ = false;
|
|
|
|
bool hasBias = biases_ && biases_->getWGrad();
|
|
real* iData = getInputValue(0)->getData();
|
|
real* iDiff = getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL;
|
|
real* oDiff = getOutputGrad()->getData();
|
|
real* wDiff = weight_->getWGrad()->getData();
|
|
real* bDiff = hasBias ? biases_->getWGrad()->getData() : NULL;
|
|
|
|
/// backward weight
|
|
// create memory desc for backward memory
|
|
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
|
|
: createMD({bs_, ic_}, format::nc);
|
|
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
|
|
: createMD({oc_, ic_}, format::oi);
|
|
memory::desc oMD = createMD({bs_, oc_}, format::nc);
|
|
memory::desc bMD = bDiff != NULL ? createMD({oc_}, format::x)
|
|
: createMD({}, format::format_undef);
|
|
|
|
if (inVal_) {
|
|
// update data
|
|
inVal_->set_data_handle(iData);
|
|
} else {
|
|
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
|
|
}
|
|
|
|
// create memory primitive desc and memory self
|
|
wgtGrad_.reset(new memory(memory::primitive_desc(wMD, engine_), wDiff));
|
|
outGrad_.reset(new memory(memory::primitive_desc(oMD, engine_), oDiff));
|
|
|
|
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, iMD, wMD, oMD);
|
|
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
|
|
fc_bwdWgt::desc bwdWgtDesc = bDiff != NULL
|
|
? fc_bwdWgt::desc(iMD, wMD, bMD, oMD)
|
|
: fc_bwdWgt::desc(iMD, wMD, oMD);
|
|
fc_bwdWgt::primitive_desc bwdWgtPD =
|
|
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
|
|
|
|
if (bDiff != NULL) {
|
|
biasGrad_.reset(new memory(memory::primitive_desc(bMD, engine_), bDiff));
|
|
bwdWgt_.reset(
|
|
new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
|
|
} else {
|
|
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
|
|
}
|
|
pipelineBwd_.clear();
|
|
pipelineBwd_.push_back(*bwdWgt_);
|
|
|
|
/// backward data
|
|
if (iDiff == NULL) {
|
|
return;
|
|
}
|
|
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(iMD, wMD, oMD);
|
|
fc_bwdData::primitive_desc bwdDataPD =
|
|
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
|
|
inGrad_.reset(new memory(memory::primitive_desc(iMD, engine_), iDiff));
|
|
CHECK(wgtVal_) << "Should have weight memory";
|
|
bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
|
|
pipelineBwd_.push_back(*bwdData_);
|
|
}
|
|
|
|
void MKLDNNFcLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
reshape();
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
|
|
|
|
// update input data
|
|
// since it might be changed if this is after data layer
|
|
real* iData = getInputValue(0)->getData();
|
|
inVal_->set_data_handle(iData);
|
|
|
|
// just submit forward pipeline
|
|
stream_->submit(pipelineFwd_);
|
|
}
|
|
|
|
/* activation */ {
|
|
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
|
|
forwardActivation();
|
|
}
|
|
}
|
|
|
|
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
|
|
/* Do derivation */ {
|
|
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
|
|
backwardActivation();
|
|
}
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
|
|
resetBwd();
|
|
|
|
// update diff
|
|
real* oDiff = getOutputGrad()->getData();
|
|
outGrad_->set_data_handle(oDiff);
|
|
|
|
// just sumbmit backward pipeline
|
|
stream_->submit(pipelineBwd_);
|
|
}
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
|
weight_->getParameterPtr()->incUpdate(callback);
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
}
|
|
} // namespace paddle
|