You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tensor/creation.py

1114 lines
41 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
from ..fluid.framework import Variable
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
from paddle.common_ops_import import *
# TODO: define functions to get create a tensor
from ..fluid.layers import crop_tensor #DEFINE_ALIAS
from ..fluid.layers import fill_constant #DEFINE_ALIAS
from ..fluid.layers import linspace #DEFINE_ALIAS
import paddle
__all__ = [
'to_tensor',
'crop_tensor',
'diag',
'fill_constant',
# 'get_tensor_from_selected_rows',
'linspace',
'ones',
'ones_like',
'zeros',
'zeros_like',
'arange',
'eye',
'full',
'full_like',
'empty',
'empty_like',
'triu',
'tril',
'meshgrid'
]
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
"""
Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` ,
which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy
will be performed and return origin tensor, otherwise a new tensor will be constructed
and returned.
The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then
``x.real`` is the real part, and ``x.imag`` is the imaginary part.
Args:
data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data``
except for python float number which gets dtype from ``get_default_type`` .
place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be
CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.
Returns:
Tensor: A Tensor or ComplexTensor constructed from ``data`` .
Raises:
TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
type(paddle.to_tensor(1))
# <class 'paddle.Tensor'>
paddle.to_tensor(1)
# Tensor: generated_tensor_0
# - place: CUDAPlace(0) # allocate on global default place CPU:0
# - shape: [1]
# - layout: NCHW
# - dtype: int64_t
# - data: [1]
x = paddle.to_tensor(1)
paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
# Tensor: generated_tensor_01
# - place: CPUPlace
# - shape: [1]
# - layout: NCHW
# - dtype: int
# - data: [1]
paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
# Tensor: generated_tensor_1
# - place: CUDAPinnedPlace
# - shape: [2]
# - layout: NCHW
# - dtype: double
# - data: [1.1 2.2]
paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
# Tensor: generated_tensor_2
# - place: CUDAPlace(0)
# - shape: [2, 2]
# - layout: NCHW
# - dtype: double
# - data: [0.1 0.2 0.3 0.4]
type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64')
# <class 'paddle.ComplexTensor'>
paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
# ComplexTensor[real]: generated_tensor_0.real
# - place: CUDAPlace(0)
# - shape: [2, 2]
# - layout: NCHW
# - dtype: float
# - data: [1 2 3 4]
# ComplexTensor[imag]: generated_tensor_0.imag
# - place: CUDAPlace(0)
# - shape: [2, 2]
# - layout: NCHW
# - dtype: float
# - data: [1 0 2 0]
"""
if place is None:
place = _current_expected_place()
elif not isinstance(place,
(core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
raise ValueError(
"'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
)
#Todo(zhouwei): Support allocate tensor on any other specified card
if isinstance(place, core.CUDAPlace) and isinstance(
_current_expected_place(), core.CUDAPlace) and place._get_device_id(
) != _current_expected_place()._get_device_id():
place = _current_expected_place()
if not isinstance(data, np.ndarray):
if np.isscalar(data) and not isinstance(data, str):
data = np.array([data])
elif isinstance(data, (list, tuple)):
data = np.array(data)
if data.dtype == np.object:
raise ValueError(
"\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
"this means the input data contains nested lists with different lengths. "
)
elif isinstance(data, paddle.Tensor):
data.stop_gradient = stop_gradient
if not data.place._equals(place):
data = data._copy_to(place, False)
if dtype:
if convert_dtype(dtype) != convert_dtype(data.dtype):
return data.astype(convert_dtype(dtype))
return data
elif isinstance(data, paddle.ComplexTensor):
return data
else:
raise TypeError(
"Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
format(type(data)))
if not dtype and data.dtype in [
'float16', 'float32', 'float64', 'complex64', 'complex128'
]:
default_type = paddle.get_default_dtype()
if np.iscomplexobj(data):
default_type = 'complex64' if default_type in [
'float16', 'float32'
] else 'complex128'
data = data.astype(default_type)
if dtype and convert_dtype(dtype) != data.dtype:
data = data.astype(dtype)
if not np.iscomplexobj(data):
if dtype and convert_dtype(dtype) != data.dtype:
data = data.astype(dtype)
return paddle.Tensor(
value=data,
place=place,
persistable=False,
zero_copy=False,
stop_gradient=stop_gradient)
else:
name = unique_name.generate('generated_tensor')
real_tensor = paddle.Tensor(
value=data.real,
place=place,
zero_copy=False,
name=name + ".real",
stop_gradient=stop_gradient)
imag_tensor = paddle.Tensor(
value=data.imag,
place=place,
zero_copy=False,
name=name + ".imag",
stop_gradient=stop_gradient)
return paddle.ComplexTensor(real_tensor, imag_tensor)
def full_like(x, fill_value, dtype=None, name=None):
"""
This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
If the ``dtype`` is None, the data type of Tensor is same with ``x``.
Args:
x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
dtype(np.dtype|str, optional): The data type of output. The data type can be one
of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
data type is the same as input.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static() # Now we are in imperative mode
input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
output = paddle.full_like(input, 2.0)
# [[2. 2. 2.]
# [2. 2. 2.]]
"""
if dtype is None:
dtype = x.dtype
else:
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
helper = LayerHelper("full_like", **locals())
check_variable_and_dtype(
x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'full_like')
check_dtype(dtype, 'dtype',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'full_like/zeros_like/ones_like')
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type='fill_any_like',
inputs={'X': [x]},
attrs={'value': fill_value,
"dtype": dtype},
outputs={'Out': [out]})
out.stop_gradient = True
return out
def ones(shape, dtype=None, name=None):
"""
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
Args:
shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
dtype(np.dtype|str, optional): Data type of output Tensor, it supports
bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
# default dtype for ones OP
data1 = paddle.ones(shape=[3, 2])
# [[1. 1.]
# [1. 1.]
# [1. 1.]]
data2 = paddle.ones(shape=[2, 2], dtype='int32')
# [[1 1]
# [1 1]]
# shape is a Tensor
shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
data3 = paddle.ones(shape=shape, dtype='int32')
# [[1 1]
# [1 1]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
def ones_like(x, dtype=None, name=None):
"""
:alias_main: paddle.ones_like
:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
This OP returns a Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Args:
x(Tensor): The input tensor which specifies shape and dtype. The
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: bool, float16, float32, float64,
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([1,2,3])
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
"""
return full_like(x=x, fill_value=1, dtype=dtype, name=name)
def zeros(shape, dtype=None, name=None):
"""
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
Args:
shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
dtype(np.dtype|str, optional): Data type of output Tensor, it supports
bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
Examples:
.. code-block:: python
import paddle
paddle.disable_static() # Now we are in imperative mode
data = paddle.zeros(shape=[3, 2], dtype='float32')
# [[0. 0.]
# [0. 0.]
# [0. 0.]]
data = paddle.zeros(shape=[2, 2])
# [[0. 0.]
# [0. 0.]]
# shape is a Tensor
shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
data3 = paddle.zeros(shape=shape, dtype='int32')
# [[0 0]
# [0 0]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
def zeros_like(x, dtype=None, name=None):
"""
:alias_main: paddle.zeros_like
:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
This OP returns a Tensor filled with the value 0, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Args:
x(Tensor): The input tensor which specifies shape and dtype. The
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: bool, float16, float32, float64,
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with the value 0, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([1,2,3])
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
"""
return full_like(x=x, fill_value=0, dtype=dtype, name=name)
def eye(num_rows, num_columns=None, dtype=None, name=None):
"""
This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
Args:
num_rows(int): the number of rows in each batch Tensor.
num_columns(int, optional): the number of columns in each batch Tensor.
If None, default: num_rows.
dtype(np.dtype|str, optional): The data type of the returned Tensor.
It should be int32, int64, float16, float32, float64. Default: if None, the data type
is float32.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
Examples:
.. code-block:: python
import paddle
paddle.disable_static() # Now we are in imperative mode
data = paddle.eye(3, dtype='int32')
# [[1 0 0]
# [0 1 0]
# [0 0 1]]
data = paddle.eye(2, 3, dtype='int32')
# [[1 0 0]
# [0 1 0]]
"""
if dtype is None:
dtype = 'float32'
if num_columns is None:
num_columns = num_rows
return paddle.fluid.layers.eye(num_rows=num_rows,
num_columns=num_columns,
batch_shape=None,
dtype=dtype,
name=name)
def full(shape, fill_value, dtype=None, name=None):
"""
This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
Args:
shape(list|tuple|Tensor): Shape of the Tensor to be created.
The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is an Tensor, it should be an 1-D Tensor .
fill_value(bool|float|int|Tensor): The constant value
used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
dtype(np.dtype|str, optional): Data type of the output Tensor
which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
type of created Tensor is `float32`
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
Examples:
.. code-block:: python
import paddle
paddle.disable_static() # Now we are in imperative mode
data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
#[[0]
# [0]]
# attr shape is a list which contains Tensor.
positive_2 = paddle.fill_constant([1], "int32", 2)
data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
# [[1.5 1.5]]
# attr shape is a Tensor.
shape = paddle.fill_constant([2], "int32", 2)
data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
# [[True True]
# [True True]]
# attr fill_value is a Tensor.
val = paddle.fill_constant([1], "float32", 2.0)
data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
# [[2.0]
# [2.0]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
def arange(start=0, end=None, step=1, dtype=None, name=None):
"""
:alias_main: paddle.arange
:alias: paddle.tensor.arange, paddle.tensor.creation.arange
This OP returns a 1-D Tensor with spaced values within a given interval.
Values are generated into the half-open interval [``start``, ``end``) with
the ``step``. (the interval including ``start`` but excluding ``end``).
If ``dtype`` is float32 or float64, we advise adding a small epsilon to
``end`` to avoid floating point rounding errors when comparing against ``end``.
Parameters:
start(float|int|Tensor): Start of interval. The interval includes this
value. If ``end`` is None, the half-open interval is [0, ``start``).
If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
data type int32, int64, float32, float64. Default is 0.
end(float|int|Tensor, optional): End of interval. The interval does not
include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
shape [1], with data type int32, int64, float32, float64. If ``end``
is None, the half-open interval is [0, ``start``). Default is None.
step(float|int|Tensor, optional): Spacing between values. For any out,
it is the istance between two adjacent values, out[i+1] - out[i].
If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
data type int32, int64, float32, float64. Default is 1.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: int32, int64, float32, float64.
If ``dytpe`` is None, the data type is float32. Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
taken with common difference ``step`` beginning from ``start``. Its
data type is set by ``dtype``.
Raises:
TypeError: If ``dtype`` is not int32, int64, float32, float64.
examples:
.. code-block:: python
import paddle
paddle.disable_static()
out1 = paddle.arange(5)
# [0, 1, 2, 3, 4]
out2 = paddle.arange(3, 9, 2.0)
# [3, 5, 7]
# use 4.999 instead of 5.0 to avoid floating point rounding errors
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
start_var = paddle.to_tensor([3])
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
"""
if dtype is None:
dtype = 'int64'
if end is None:
end = start
start = 0
return paddle.fluid.layers.range(start, end, step, dtype, name)
def _tril_triu_op(helper):
"""Base op of tril_op and triu_op
"""
op_type = helper.layer_type
x = helper.kwargs.get('x', None)
assert x is not None, 'x cannot be None in {}'.format(op_type)
check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
op_type)
if len(x.shape) < 2:
raise ValueError("x shape in {} must be at least 2-D".format(op_type))
diagonal = helper.kwargs.get('diagonal', 0)
if not isinstance(diagonal, (int, )):
raise TypeError("diagonal in {} must be a python Int".format(op_type))
name = helper.kwargs.get('name', None)
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="tril_triu",
inputs={"X": x},
attrs={
"diagonal": diagonal,
"lower": True if op_type == 'tril' else False,
},
outputs={"Out": out}, )
return out
def tril(x, diagonal=0, name=None):
"""
:alias_main: paddle.tril
:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
This op returns the lower triangular part of a matrix (2-D tensor) or batch
of matrices :attr:`x`, the other elements of the result tensor are set
to 0. The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
Args:
x (Variable): The input variable x which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
it's data type is the same as x's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`x` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
paddle.disable_static()
x = paddle.to_tensor(data)
tril1 = paddle.tensor.tril(x)
# array([[ 1, 0, 0, 0],
# [ 5, 6, 0, 0],
# [ 9, 10, 11, 0]])
# example 2, positive diagonal value
tril2 = paddle.tensor.tril(x, diagonal=2)
# array([[ 1, 2, 3, 0],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
# example 3, negative diagonal value
tril3 = paddle.tensor.tril(x, diagonal=-1)
# array([[ 0, 0, 0, 0],
# [ 5, 0, 0, 0],
# [ 9, 10, 0, 0]])
"""
if in_dygraph_mode():
op = getattr(core.ops, 'tril_triu')
return op(x, 'diagonal', diagonal, "lower", True)
return _tril_triu_op(LayerHelper('tril', **locals()))
def triu(x, diagonal=0, name=None):
"""
:alias_main: paddle.triu
:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
:attr:`x`, the other elements of the result tensor are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
Args:
x (Variable): The input variable x which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
it's data type is the same as x's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`x` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
paddle.disable_static()
# example 1, default diagonal
x = paddle.to_tensor(data)
triu1 = paddle.tensor.triu(x)
# array([[ 1, 2, 3, 4],
# [ 0, 6, 7, 8],
# [ 0, 0, 11, 12]])
# example 2, positive diagonal value
triu2 = paddle.tensor.triu(x, diagonal=2)
# array([[0, 0, 3, 4],
# [0, 0, 0, 8],
# [0, 0, 0, 0]])
# example 3, negative diagonal value
triu3 = paddle.tensor.triu(x, diagonal=-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 0, 10, 11, 12]])
"""
if in_dygraph_mode():
op = getattr(core.ops, 'tril_triu')
return op(x, 'diagonal', diagonal, "lower", False)
return _tril_triu_op(LayerHelper('triu', **locals()))
def meshgrid(*args, **kwargs):
"""
:alias_main: paddle.meshgrid
:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
This op takes a list of N tensors as input *args, each of which is 1-dimensional
vector, and creates N-dimensional grids.
Args:
*args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
(N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
**kwargs (optional): Currently, we only accept name in **kwargs
The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
Examples:
.. code-block:: python
import paddle
x = paddle.randint(low=0, high=100, shape=[100])
y = paddle.randint(low=0, high=100, shape=[200])
grid_x, grid_y = paddle.meshgrid(x, y)
print(grid_x.shape)
print(grid_y.shape)
#the shape of res_1 is (100, 200)
#the shape of res_2 is (100, 200)
"""
if len(args) == 1 and isinstance(args[0], (list, tuple)):
args = args[0]
if in_dygraph_mode():
num = len(args)
out = core.ops.meshgrid(list(args), num)
return out
name = kwargs.get("name", None)
helper = LayerHelper('meshgrid', **locals())
if not isinstance(args, (list, tuple)):
raise TypeError("The type of input args in meshgrid should be list.")
for id, input_ in enumerate(args):
check_dtype(input_.dtype, 'create data type',
['float16', 'float32', 'float64', 'int32', 'int64'],
'meshgrid')
num = len(args)
out = [
helper.create_variable_for_type_inference(dtype=args[i].dtype)
for i in range(num)
]
helper.append_op(
type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
return out
def diag(x, offset=0, padding_value=0, name=None):
"""
If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.
If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.
The argument ``offset`` controls the diagonal offset:
If ``offset`` = 0, it is the main diagonal.
If ``offset`` > 0, it is superdiagonal.
If ``offset`` < 0, it is subdiagonal.
Args:
x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, a square matrix or a vector. The output data type is the same as input data type.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([1, 2, 3])
y = paddle.diag(x)
print(y.numpy())
# [[1 0 0]
# [0 2 0]
# [0 0 3]]
y = paddle.diag(x, offset=1)
print(y.numpy())
# [[0 1 0 0]
# [0 0 2 0]
# [0 0 0 3]
# [0 0 0 0]]
y = paddle.diag(x, padding_value=6)
print(y.numpy())
# [[1 6 6]
# [6 2 6]
# [6 6 3]]
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
y = paddle.diag(x)
print(y.numpy())
# [1 5]
y = paddle.diag(x, offset=1)
print(y.numpy())
# [2 6]
y = paddle.diag(x, offset=-1)
print(y.numpy())
# [4]
"""
if in_dygraph_mode():
return core.ops.diag_v2(x, "offset", offset, "padding_value",
padding_value)
check_type(x, 'x', (Variable), 'diag_v2')
check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
'diag_v2')
check_type(offset, 'offset', (int), 'diag_v2')
check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
if len(x.shape) != 1 and len(x.shape) != 2:
raise ValueError(
"The dimension of input x must be either 1 or 2, but received {}".
format(len(x.shape)))
helper = LayerHelper("diag_v2", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='diag_v2',
inputs={'X': x},
outputs={'Out': out},
attrs={'offset': offset,
'padding_value': padding_value})
out.stop_gradient = True
return out
def empty(shape, dtype=None, name=None):
"""
This Op returns a Tensor with uninitialized data which size is same as ``shape``.
Args:
shape(list|tuple|Tensor): Shape of the Tensor to be created.
The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is an Tensor, it should be an 1-D Tensor.
dtype(np.dtype|str, optional): Data type of the output Tensor
which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
type of created Tensor use global default dtype (see ``get_default_dtype``
for details).
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static() # Now we are in imperative mode
paddle.set_device("cpu") # and use cpu device
# example 1: argument ``shape`` is a list which doesn't contain Tensor.
data1 = paddle.empty(shape=[2,3], dtype='float32')
#[[4.3612203e+27 1.8176809e+31 1.3555911e-19] # uninitialized
# [1.1699684e-19 1.3563156e-19 3.6408321e-11]] # uninitialized
# example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
shape_data = np.array([2, 3]).astype('int32')
shape = paddle.to_tensor(shape_data)
data2 = paddle.empty(shape=shape, dtype='float32')
#[[1.7192326e-37 4.8125365e-38 1.9866003e-36] # uninitialized
# [1.3284029e-40 7.1117408e-37 2.5353012e+30]] # uninitialized
# example 3: argument ``shape`` is a list which contains Tensor.
dim2_data = np.array([3]).astype('int32')
dim2 = paddle.to_tensor(dim2_data)
data3 = paddle.empty(shape=[2, dim2], dtype='float32')
#[[1.1024214e+24 7.0379409e+22 6.5737699e-34] # uninitialized
# [7.5563101e+31 7.7130405e+31 2.8020654e+20]] # uninitialized
"""
if dtype is None:
dtype = paddle.get_default_dtype()
dtype = convert_dtype(dtype)
if in_dygraph_mode():
shape = utils.convert_shape_to_list(shape)
out = core.ops.empty('shape', shape, 'dtype',
convert_np_dtype_to_dtype_(dtype))
out.stop_gradient = True
return out
helper = LayerHelper("empty", **locals())
inputs = {}
check_dtype(dtype, 'dtype',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'empty')
check_type(shape, 'shape', (Variable, list, tuple), 'empty')
if isinstance(shape, Variable):
check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
attrs = {}
utils.get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='empty')
out = helper.create_variable_for_type_inference(dtype=dtype)
attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='empty',
inputs=inputs,
outputs={'Out': [out]},
attrs=attrs,
stop_gradient=True)
out.stop_gradient = True
return out
def empty_like(x, dtype=None, name=None):
"""
This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
If the ``dtype`` is None, the data type of Tensor is same with ``x``.
Args:
x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
dtype(np.dtype|str, optional): The data type of output. The data type can be one
of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
data type is the same as input.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static() # Now we are in imperative mode
paddle.set_device("cpu") # and use cpu device
x = paddle.randn([2, 3], 'float32')
output = paddle.empty_like(x)
#[[1.8491974e+20 1.8037303e+28 1.7443726e+28] # uninitialized
# [4.9640171e+28 3.0186127e+32 5.6715899e-11]] # uninitialized
"""
if dtype is None:
dtype = x.dtype
dtype = convert_dtype(dtype)
if in_dygraph_mode():
out = core.ops.empty('shape', x.shape, 'dtype',
convert_np_dtype_to_dtype_(dtype))
out.stop_gradient = True
return out
helper = LayerHelper("empty_like", **locals())
check_variable_and_dtype(
x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'empty_like')
check_dtype(dtype, 'dtype',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'empty_like')
out = helper.create_variable_for_type_inference(dtype=dtype)
inputs = {}
attrs = {}
attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
shape = paddle.shape(x)
utils.get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')
helper.append_op(
type='empty',
inputs=inputs,
outputs={'Out': [out]},
attrs=attrs,
stop_gradient=True)
out.stop_gradient = True
return out