You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
8.1 KiB
253 lines
8.1 KiB
/*
|
|
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
#include "paddle/operators/recurrent_op.h"
|
|
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "paddle/framework/ddim.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/operator.h"
|
|
#include "paddle/framework/tensor.h"
|
|
#include "paddle/operators/net_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using namespace paddle::framework;
|
|
|
|
class RecurrentGradientAlgorithmTest : public ::testing::Test {
|
|
protected:
|
|
virtual void SetUp() override {
|
|
CreateGlobalVariables();
|
|
CreateStepScopes();
|
|
CreateStepNet();
|
|
CreateRNNGradientAlgorithm();
|
|
|
|
// segment inputs
|
|
SegmentInputs();
|
|
// link forward memories
|
|
LinkeMemories();
|
|
}
|
|
|
|
virtual void TearDown() override {}
|
|
|
|
void CreateGlobalVariables() {
|
|
// inputs: x
|
|
LOG(INFO) << "create global variable x";
|
|
Variable* x = scope_.NewVar("x");
|
|
DDim dims =
|
|
make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
|
|
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
|
|
// inputs: h_boot
|
|
LOG(INFO) << "create global variable h_boot";
|
|
Variable* h_boot = scope_.NewVar("h_boot");
|
|
h_boot->GetMutable<Tensor>()->mutable_data<float>(
|
|
make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
|
|
// inputs: w
|
|
LOG(INFO) << "create global variable w";
|
|
Variable* w = scope_.NewVar("rnn/w");
|
|
w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
|
|
platform::CPUPlace());
|
|
// inputs: h_grad
|
|
LOG(INFO) << "create variable h_grad";
|
|
Variable* dh = scope_.NewVar("h_grad");
|
|
dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
|
|
platform::CPUPlace());
|
|
// inputs: step_scopes
|
|
LOG(INFO) << "create variable step_scopes";
|
|
scope_.NewVar("step_scopes");
|
|
// inputs: step_net
|
|
LOG(INFO) << "create variable step_net";
|
|
scope_.NewVar("step_net");
|
|
// outputs: w_grad
|
|
LOG(INFO) << "create global variable w_grad";
|
|
scope_.NewVar("rnn/w_grad");
|
|
// outputs: x_grad
|
|
LOG(INFO) << "create global variable x_grad";
|
|
scope_.NewVar("x_grad");
|
|
// outputs: h_boot_grad
|
|
LOG(INFO) << "create global variable h_boot_grad";
|
|
scope_.NewVar("h_boot_grad");
|
|
}
|
|
|
|
void CreateStepScopes() {
|
|
auto step_scopes =
|
|
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
|
|
for (int i = 0; i < 10; ++i) {
|
|
auto& scope = scope_.NewScope();
|
|
auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
|
|
pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
|
|
tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
|
|
// for unit test of ConcatOutputs
|
|
auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
|
|
xg->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
|
|
step_scopes->emplace_back(&scope);
|
|
}
|
|
|
|
// last time step
|
|
auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
|
|
g->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
}
|
|
|
|
void CreateRNNGradientAlgorithm() {
|
|
std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
|
|
arg->step_net = "step_net";
|
|
arg->step_scopes = "step_scopes";
|
|
rnn::Link inlink;
|
|
inlink.external = "h_grad";
|
|
inlink.internal = "rnn/h_grad";
|
|
arg->inlinks = std::vector<rnn::Link>{inlink};
|
|
|
|
rnn::Link outlink;
|
|
outlink.external = "x_grad";
|
|
outlink.internal = "rnn/x_grad";
|
|
arg->outlinks = std::vector<rnn::Link>{outlink};
|
|
|
|
rnn::MemoryAttr mem_attr;
|
|
mem_attr.pre_var = "rnn/h_pre_grad";
|
|
mem_attr.var = "rnn/h_grad";
|
|
mem_attr.boot_var = "h_boot_grad";
|
|
arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};
|
|
|
|
rnn_grad_algo_.Init(std::move(arg));
|
|
}
|
|
|
|
void CreateStepNet() {
|
|
LOG(INFO) << "create variable step_net";
|
|
Variable* var = scope_.NewVar("step_net");
|
|
auto net = var->GetMutable<NetOp>();
|
|
// TODO(qingqing) modify backward op create for RNNOp unit test
|
|
// and the unit test will be removed to Python.
|
|
// net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w",
|
|
// "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {}));
|
|
|
|
// net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}},
|
|
// {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {}));
|
|
net->CompleteAddOp();
|
|
}
|
|
|
|
void SegmentInputs() {
|
|
LOG(INFO) << "segment inputs";
|
|
std::vector<std::string> inlinks = {"x"};
|
|
std::vector<std::string> inlinks_alias = {"rnn/x"};
|
|
|
|
rnn::Link inlink;
|
|
inlink.external = "x";
|
|
inlink.internal = "rnn/x";
|
|
auto step_scopes =
|
|
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
|
|
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
|
|
true /*infer_shape_mode*/);
|
|
}
|
|
|
|
void LinkeMemories() {
|
|
LOG(INFO) << "link memories";
|
|
rnn::MemoryAttr mem_attr;
|
|
mem_attr.pre_var = "rnn/h_pre";
|
|
mem_attr.var = "rnn/h";
|
|
mem_attr.boot_var = "boot_h";
|
|
std::vector<rnn::MemoryAttr> memories;
|
|
memories.push_back(mem_attr);
|
|
auto step_scopes =
|
|
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
|
|
for (int i = 1; i < 10; ++i) {
|
|
rnn::LinkMemories(*step_scopes, memories, i, -1,
|
|
true /*infer_shape_mode*/);
|
|
}
|
|
}
|
|
|
|
Scope scope_;
|
|
RecurrentGradientAlgorithm rnn_grad_algo_;
|
|
};
|
|
|
|
// TEST_F(RecurrentGradientAlgorithmTest, Run) {
|
|
// platform::CPUDeviceContext ctx;
|
|
// rnn_grad_algo_.Run(scope_, ctx);
|
|
// }
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
TEST(RecurrentOp, LinkMemories) {
|
|
using namespace paddle::framework;
|
|
using namespace paddle::platform;
|
|
using namespace paddle::operators;
|
|
|
|
// create and init step scopes
|
|
size_t len = 10;
|
|
std::vector<Scope*> step_scopes;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
auto scope = new Scope();
|
|
scope->NewVar("pre_h");
|
|
auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
|
|
float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
data[j] = rand() * (1. / (double)RAND_MAX);
|
|
}
|
|
step_scopes.push_back(scope);
|
|
}
|
|
|
|
// create MemoryAttr
|
|
rnn::MemoryAttr mem_attr;
|
|
mem_attr.pre_var = "pre_h";
|
|
mem_attr.var = "h";
|
|
mem_attr.boot_var = "boot_h";
|
|
std::vector<rnn::MemoryAttr> memories;
|
|
memories.push_back(mem_attr);
|
|
|
|
for (size_t i = 1; i < len; ++i) {
|
|
rnn::LinkMemories(step_scopes, memories, i, -1, false
|
|
/*infer_shape_mode*/);
|
|
}
|
|
// check
|
|
for (size_t i = 0; i < len - 1; ++i) {
|
|
const float* a =
|
|
step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
|
|
const float* b = step_scopes[i + 1]
|
|
->FindVar("pre_h")
|
|
->GetMutable<Tensor>()
|
|
->data<float>();
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
ASSERT_FLOAT_EQ(a[j], b[j]);
|
|
}
|
|
}
|
|
|
|
for (int i = len - 2; i >= 0; --i) {
|
|
rnn::LinkMemories(step_scopes, memories, i, 1, false
|
|
/*infer_shape_mode*/);
|
|
}
|
|
// check
|
|
for (int i = len - 2; i >= 0; --i) {
|
|
const float* a =
|
|
step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
|
|
const float* b =
|
|
step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
ASSERT_FLOAT_EQ(a[j], b[j]);
|
|
}
|
|
}
|
|
|
|
for (auto s : step_scopes) {
|
|
delete s;
|
|
}
|
|
}
|
|
|
|
USE_OP(add_two);
|
|
USE_OP(mul);
|
|
USE_OP_ITSELF(recurrent_op);
|