You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
7.2 KiB
166 lines
7.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/fluid/operators/pool_op.h"
|
|
#include <unordered_map>
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
|
|
bool is_test) {
|
|
if (pooltype == "max") {
|
|
return xpu::Pooling_t::MAX_WITHOUT_INDEX;
|
|
} else if (pooltype == "avg") {
|
|
if (exclusive) {
|
|
return xpu::Pooling_t::AVG_WITHOUT_PAD;
|
|
} else {
|
|
return xpu::Pooling_t::AVG_WITH_PAD;
|
|
}
|
|
} else {
|
|
PADDLE_THROW(platform::errors::InvalidArgument(
|
|
"Pool op only supports 2D and 3D input."));
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PoolXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
Tensor* out = context.Output<Tensor>("Out");
|
|
std::string pooling_type = context.Attr<std::string>("pooling_type");
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
bool exclusive = context.Attr<bool>("exclusive");
|
|
bool adaptive = context.Attr<bool>("adaptive");
|
|
PADDLE_ENFORCE_EQ(
|
|
ksize.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"The Pool2d XPU OP only support 2 dimension pooling!"));
|
|
PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
|
|
platform::errors::InvalidArgument(
|
|
"The Pool2d XPU OP does not support (adaptive == "
|
|
"true && output_size != 1)"));
|
|
int* index_data = nullptr;
|
|
bool global_pooling = context.Attr<bool>("global_pooling") ||
|
|
(adaptive && (ksize[0] * ksize[1] == 1));
|
|
if (global_pooling) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
|
}
|
|
}
|
|
const int n = in_x->dims()[0];
|
|
const int c = in_x->dims()[1];
|
|
const int in_h = in_x->dims()[2];
|
|
const int in_w = in_x->dims()[3];
|
|
const float* input = in_x->data<float>();
|
|
out->mutable_data<T>(context.GetPlace());
|
|
float* output = out->data<float>();
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
int r = xpu::Error_t::SUCCESS;
|
|
if (pooling_type == "max") {
|
|
r = xpu::max_pool2d(dev_ctx.x_context(), input, output, index_data, n, c,
|
|
in_h, in_w, ksize, strides, paddings, true);
|
|
} else if (pooling_type == "avg") {
|
|
r = xpu::avg_pool2d(dev_ctx.x_context(), input, output, n, c, in_h, in_w,
|
|
ksize, strides, paddings, !exclusive, true);
|
|
} else {
|
|
PADDLE_THROW(platform::errors::InvalidArgument(
|
|
"Unsupported pooling type for kunlun ", pooling_type));
|
|
}
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The pool2d XPU API return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PoolGradXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
const Tensor* out = context.Input<Tensor>("Out");
|
|
const Tensor* out_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Out"));
|
|
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
std::string pooling_type = context.Attr<std::string>("pooling_type");
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
bool exclusive = context.Attr<bool>("exclusive");
|
|
bool adaptive = context.Attr<bool>("adaptive");
|
|
const int* index_data = nullptr;
|
|
PADDLE_ENFORCE_EQ(ksize.size(), 2, platform::errors::InvalidArgument(
|
|
"The Pool2d XPU OP only support 2 "
|
|
"dimension pooling!, but received "
|
|
"%d-dimension pool kernel size",
|
|
ksize.size()));
|
|
PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
|
|
platform::errors::InvalidArgument(
|
|
"The Pool2d XPU OP does not support (adaptive == "
|
|
"true && output_size != 1)"));
|
|
bool global_pooling = context.Attr<bool>("global_pooling") ||
|
|
(adaptive && (ksize[0] * ksize[1] == 1));
|
|
if (global_pooling) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
|
}
|
|
}
|
|
if (!in_x_grad) {
|
|
return;
|
|
}
|
|
const int n = in_x->dims()[0];
|
|
const int c = in_x->dims()[1];
|
|
const int in_h = in_x->dims()[2];
|
|
const int in_w = in_x->dims()[3];
|
|
const float* input = in_x->data<float>();
|
|
const float* output = out->data<float>();
|
|
const float* output_grad = out_grad->data<float>();
|
|
in_x_grad->mutable_data<T>(context.GetPlace());
|
|
float* input_grad = in_x_grad->data<float>();
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
int r = xpu::Error_t::SUCCESS;
|
|
if (pooling_type == "max") {
|
|
r = xpu::max_pool2d_grad(dev_ctx.x_context(), input, output, index_data,
|
|
output_grad, input_grad, n, c, in_h, in_w, ksize,
|
|
strides, paddings, true);
|
|
} else if (pooling_type == "avg") {
|
|
r = xpu::avg_pool2d_grad(dev_ctx.x_context(), input, output, output_grad,
|
|
input_grad, n, c, in_h, in_w, ksize, strides,
|
|
paddings, !exclusive, true);
|
|
} else {
|
|
PADDLE_THROW(platform::errors::InvalidArgument(
|
|
"Unsupported pooling type for kunlun ", pooling_type));
|
|
}
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The Pool2dGrad XPU OP return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_XPU_KERNEL(
|
|
pool2d, ops::PoolXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
|
REGISTER_OP_XPU_KERNEL(
|
|
pool2d_grad,
|
|
ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
|
|
|
#endif
|