You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							166 lines
						
					
					
						
							6.1 KiB
						
					
					
				
			
		
		
	
	
							166 lines
						
					
					
						
							6.1 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *     Unless required by applicable law or agreed to in writing, software
 | |
|  *     distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *     See the License for the specific language governing permissions and
 | |
|  *     limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/bmm_op.h"
 | |
| #include <vector>
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class BmmOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|  protected:
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->HasInput("X"), true,
 | |
|         platform::errors::NotFound("Input(X) of BmmOp should not be null"));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->HasInput("Y"), true,
 | |
|         platform::errors::NotFound("Input(Y) of BmmOp should not be null"));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->HasOutput("Out"), true,
 | |
|         platform::errors::NotFound("Output(Out) of BmmOp should not be null."));
 | |
| 
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     auto y_dims = ctx->GetInputDim("Y");
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(x_dims.size(), 3,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(X) of BmmOp must be 3-dimensional in BmmOp, "
 | |
|                           "but received X's shape: [%s].",
 | |
|                           x_dims));
 | |
|     PADDLE_ENFORCE_EQ(y_dims.size(), 3,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(Y) of BmmOp must be 3-dimensional in BmmOp, "
 | |
|                           "but received Y's shape: [%s].",
 | |
|                           y_dims));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         x_dims[0], y_dims[0],
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Input(X) and Input(Y) must have the same batch size in BmmOp, "
 | |
|             "but received X's batch size: [%s],"
 | |
|             "Y's batch size [%s]",
 | |
|             x_dims[0], y_dims[0]));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         x_dims[2], y_dims[1],
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Input(X)'s width must be equal with Input(Y)'s height in BmmOp,"
 | |
|             "but receive X's width: [%s],"
 | |
|             "Y's height: [%s].",
 | |
|             x_dims[2], y_dims[1]));
 | |
| 
 | |
|     std::vector<int64_t> dim_out;
 | |
|     dim_out.push_back(x_dims[0]);
 | |
|     dim_out.push_back(x_dims[1]);
 | |
|     dim_out.push_back(y_dims[2]);
 | |
|     ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
 | |
|     ctx->ShareLoD("X", /*->*/ "Out");
 | |
|   }
 | |
| 
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
 | |
|     return framework::OpKernelType(data_type, ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BmmOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X", "(Tensor), The first input tensor of Bmm op.");
 | |
|     AddInput("Y", "(Tensor), The second input tensor of Bmm op.");
 | |
|     AddOutput("Out", "(Tensor), The output tensor of Bmm op.");
 | |
|     AddComment(R"DOC(
 | |
| The Bmm operator is used to perform batched matrix multiplication
 | |
| over the last two dimensions of the input tensors `X` and `Y` 
 | |
| which are both 3-dimentionsal. 
 | |
| 
 | |
| Examples:
 | |
| - X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
 | |
| 
 | |
|       )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BmmOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|  protected:
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->HasInput("X"), true,
 | |
|         platform::errors::NotFound("Input(X) of BmmOp should not be null"));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->HasInput("Y"), true,
 | |
|         platform::errors::NotFound("Input(Y) of BmmOp should not be null"));
 | |
|     PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
 | |
|                       platform::errors::NotFound(
 | |
|                           "Output(Out@GRAD) of BmmOp should not be null."));
 | |
| 
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     auto y_dims = ctx->GetInputDim("Y");
 | |
| 
 | |
|     auto x_grad_name = framework::GradVarName("X");
 | |
|     auto y_grad_name = framework::GradVarName("Y");
 | |
| 
 | |
|     if (ctx->HasOutput(x_grad_name)) {
 | |
|       ctx->SetOutputDim(x_grad_name, x_dims);
 | |
|     }
 | |
|     if (ctx->HasOutput(y_grad_name)) {
 | |
|       ctx->SetOutputDim(y_grad_name, y_dims);
 | |
|     }
 | |
|   }
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
 | |
|                                        ctx, framework::GradVarName("Out")),
 | |
|                                    ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class BmmOpGradMaker : public framework::SingleGradOpMaker<T> {
 | |
|  public:
 | |
|   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | |
| 
 | |
|  protected:
 | |
|   void Apply(GradOpPtr<T> retv) const override {
 | |
|     retv->SetType("bmm_grad");
 | |
|     retv->SetInput("X", this->Input("X"));
 | |
|     retv->SetInput("Y", this->Input("Y"));
 | |
|     retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | |
|     retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | |
|     retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OPERATOR(bmm, ops::BmmOp, ops::BmmOpMaker,
 | |
|                   ops::BmmOpGradMaker<paddle::framework::OpDesc>,
 | |
|                   ops::BmmOpGradMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OPERATOR(bmm_grad, ops::BmmOpGrad);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     bmm, ops::BmmKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::BmmKernel<paddle::platform::CPUDeviceContext, double>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     bmm_grad, ops::BmmGradKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::BmmGradKernel<paddle::platform::CPUDeviceContext, double>);
 |