You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							113 lines
						
					
					
						
							4.5 KiB
						
					
					
				
			
		
		
	
	
							113 lines
						
					
					
						
							4.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/framework/tensor.h"
 | |
| #include "paddle/fluid/operators/label_smooth_op.h"
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void LabelSmoothRunOriginKernel(const int N, const float epsilon,
 | |
|                                            const int label_dim, const T* src,
 | |
|                                            T* dst) {
 | |
|   int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | |
|   for (; idx < N; idx += blockDim.x * gridDim.x) {
 | |
|     dst[idx] = static_cast<T>(1 - epsilon) * src[idx] +
 | |
|                static_cast<T>(epsilon / label_dim);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void LabelSmoothRunDistKernel(const int N, const float epsilon,
 | |
|                                          const int dist_numel, const T* src,
 | |
|                                          const T* dist_data, T* dst) {
 | |
|   int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | |
|   for (; idx < N; idx += blockDim.x * gridDim.x) {
 | |
|     int dist_idx = idx % dist_numel;
 | |
|     dst[idx] = static_cast<T>(1 - epsilon) * src[idx] +
 | |
|                static_cast<T>(epsilon) * dist_data[dist_idx];
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void LabelSmoothGradRunKernel(const int N, const float epsilon,
 | |
|                                          const T* src, T* dst) {
 | |
|   int idx = blockDim.x * blockIdx.x + threadIdx.x;
 | |
|   for (; idx < N; idx += blockDim.x * gridDim.x) {
 | |
|     dst[idx] = static_cast<T>(1 - epsilon) * src[idx];
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class LabelSmoothGPUKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* out_t = ctx.Output<framework::LoDTensor>("Out");
 | |
|     auto* in_t = ctx.Input<framework::LoDTensor>("X");
 | |
|     auto* dist_t = ctx.Input<framework::Tensor>("PriorDist");
 | |
|     auto label_dim = in_t->dims()[in_t->dims().size() - 1];
 | |
|     auto epsilon = ctx.Attr<float>("epsilon");
 | |
|     auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
 | |
|     auto size_prob = in_t->numel();
 | |
|     const T* in_data = in_t->data<T>();
 | |
|     T* out_data = out_t->mutable_data<T>(ctx.GetPlace());
 | |
|     int threads = 512;
 | |
|     int grid = (size_prob + threads - 1) / threads;
 | |
|     auto stream = ctx.cuda_device_context().stream();
 | |
|     if (dist_t) {
 | |
|       auto dist_numel = dist_t->numel();
 | |
|       const T* dist_data = dist_t->data<T>();
 | |
|       LabelSmoothRunDistKernel<T><<<grid, threads, 0, stream>>>(
 | |
|           size_prob, epsilon, dist_numel, in_data, dist_data, out_data);
 | |
| 
 | |
|     } else {
 | |
|       LabelSmoothRunOriginKernel<T><<<grid, threads, 0, stream>>>(
 | |
|           size_prob, epsilon, label_dim, in_data, out_data);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class LabelSmoothGradGPUKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | |
|     d_in_t->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto epsilon = ctx.Attr<float>("epsilon");
 | |
|     auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
 | |
|     const T* in_data = d_out_t->data<T>();
 | |
|     auto size_prob = d_out_t->numel();
 | |
|     T* out_data = d_in_t->mutable_data<T>(ctx.GetPlace());
 | |
|     int threads = 512;
 | |
|     int grid = (size_prob + threads - 1) / threads;
 | |
|     auto stream = ctx.cuda_device_context().stream();
 | |
|     LabelSmoothGradRunKernel<T><<<grid, threads, 0, stream>>>(
 | |
|         size_prob, epsilon, in_data, out_data);
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OP_CUDA_KERNEL(
 | |
|     label_smooth,
 | |
|     ops::LabelSmoothGPUKernel<paddle::platform::CUDADeviceContext, float>,
 | |
|     ops::LabelSmoothGPUKernel<paddle::platform::CUDADeviceContext, double>);
 | |
| REGISTER_OP_CUDA_KERNEL(
 | |
|     label_smooth_grad,
 | |
|     ops::LabelSmoothGradGPUKernel<paddle::platform::CUDADeviceContext, float>,
 | |
|     ops::LabelSmoothGradGPUKernel<paddle::platform::CUDADeviceContext, double>);
 |