You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							121 lines
						
					
					
						
							4.7 KiB
						
					
					
				
			
		
		
	
	
							121 lines
						
					
					
						
							4.7 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/masked_select_op.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class MaskedSelectOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "Input", "MaskedSelect");
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "MaskedSelect");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Out", "MaskedSelect");
 | |
|     framework::DDim output_dims(ctx->GetInputDim("X"));
 | |
|     ctx->SetOutputDim("Y", output_dims);
 | |
|     ctx->ShareLoD("X", /*->*/ "Y");
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
 | |
|     return framework::OpKernelType(data_type, ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MaskedSelectOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X", "The input tensor.");
 | |
|     AddInput("Mask",
 | |
|              "The mask of Input Tensor to be selected which is a bool Tensor.");
 | |
|     AddOutput(
 | |
|         "Y",
 | |
|         "The returned tensor, the data type "
 | |
|         "is same as input, will be on the same device with the input Tensor.");
 | |
|     AddComment(R"DOC(
 | |
| Size Operator.
 | |
| 
 | |
| Return a new 0-D tensor which indexes the indexed tensor according
 | |
| the mask which is a tensor withe data type bool.
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MaskedSelectOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Input",
 | |
|                    "Input", "MaskedSelect");
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "MaskedSelect");
 | |
|     ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | |
|     ctx->ShareLoD("X", /*-->*/ framework::GradVarName("X"));
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
 | |
|                                        ctx, framework::GradVarName("Y")),
 | |
|                                    ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class MaskedSelectGradOpMaker : public framework::SingleGradOpMaker<T> {
 | |
|  public:
 | |
|   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | |
| 
 | |
|  protected:
 | |
|   void Apply(GradOpPtr<T> op) const override {
 | |
|     op->SetType("masked_select_grad");
 | |
|     op->SetInput("X", this->Input("X"));
 | |
|     op->SetInput("Mask", this->Input("Mask"));
 | |
|     op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
 | |
|     op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| DECLARE_NO_NEED_BUFFER_VARS_INFERER(MaskedSelectedGradNoNeedBufferVarsInferer,
 | |
|                                     "X");
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(masked_select, ops::MaskedSelectOp, ops::MaskedSelectOpMaker,
 | |
|                   ops::MaskedSelectGradOpMaker<paddle::framework::OpDesc>,
 | |
|                   ops::MaskedSelectGradOpMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OPERATOR(masked_select_grad, ops::MaskedSelectOpGrad,
 | |
|                   ops::MaskedSelectedGradNoNeedBufferVarsInferer);
 | |
| 
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     masked_select,
 | |
|     ops::MaskedSelectKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::MaskedSelectKernel<paddle::platform::CPUDeviceContext, double>,
 | |
|     ops::MaskedSelectKernel<paddle::platform::CPUDeviceContext, int>,
 | |
|     ops::MaskedSelectKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     masked_select_grad,
 | |
|     ops::MaskedSelectGradKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::MaskedSelectGradKernel<paddle::platform::CPUDeviceContext, double>,
 | |
|     ops::MaskedSelectGradKernel<paddle::platform::CPUDeviceContext, int>,
 | |
|     ops::MaskedSelectGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
 |