You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
8.9 KiB
208 lines
8.9 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/cudnn_rnn_cache.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/cudnn_desc.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename T>
|
|
class CudnnLSTMGPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
const Tensor *x = ctx.Input<Tensor>("Input");
|
|
const Tensor *init_h = ctx.Input<Tensor>("InitH");
|
|
const Tensor *init_c = ctx.Input<Tensor>("InitC");
|
|
|
|
auto w = ctx.Input<Tensor>("W");
|
|
|
|
Tensor *out = ctx.Output<Tensor>("Out");
|
|
Tensor *last_h = ctx.Output<Tensor>("LastH");
|
|
Tensor *last_c = ctx.Output<Tensor>("LastC");
|
|
Tensor *reserve = ctx.Output<Tensor>("Reserve");
|
|
Tensor *state_out = ctx.Output<Tensor>("StateOut");
|
|
|
|
const T *x_data = x->data<T>();
|
|
const T *init_h_data = init_h->data<T>();
|
|
const T *init_c_data = init_c->data<T>();
|
|
|
|
const T *w_data = w->data<T>();
|
|
|
|
T *out_data = out->mutable_data<T>(ctx.GetPlace());
|
|
T *last_h_data = last_h->mutable_data<T>(ctx.GetPlace());
|
|
T *last_c_data = last_c->mutable_data<T>(ctx.GetPlace());
|
|
|
|
float dropout_prob = ctx.Attr<float>("dropout_prob");
|
|
bool is_bidirec = ctx.Attr<bool>("is_bidirec");
|
|
int hidden_size = ctx.Attr<int>("hidden_size");
|
|
int num_layers = ctx.Attr<int>("num_layers");
|
|
bool is_test = ctx.Attr<bool>("is_test");
|
|
int seed = ctx.Attr<int>("seed");
|
|
|
|
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto handle = dev_ctx.cudnn_handle();
|
|
|
|
CudnnRNNCache *cudnn_rnn_cache = new CudnnRNNCache();
|
|
|
|
auto input_w_numel = w->numel();
|
|
auto seq_len = x->dims()[0];
|
|
auto batch_size = x->dims()[1];
|
|
auto input_dim = x->dims()[2];
|
|
size_t reserve_size;
|
|
bool state_initialized = state_out->IsInitialized() ? true : false;
|
|
cudnnDataType_t cudnn_type = platform::ToCudnnDataType(
|
|
framework::ToDataType(std::type_index(typeid(T))));
|
|
cudnn_rnn_cache->init(handle, ctx.GetPlace(), seq_len, batch_size,
|
|
input_dim, hidden_size, num_layers, dropout_prob,
|
|
is_bidirec, seed, input_w_numel, &reserve_size,
|
|
state_out, state_initialized, cudnn_type);
|
|
|
|
auto *reserve_data = reserve->mutable_data<uint8_t>(
|
|
{static_cast<int64_t>(reserve_size)}, ctx.GetPlace());
|
|
|
|
if (is_test) {
|
|
// for inference
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardInference(
|
|
handle, cudnn_rnn_cache->rnn_desc_, seq_len, cudnn_rnn_cache->x_desc_,
|
|
x_data, cudnn_rnn_cache->hx_desc_, init_h_data,
|
|
cudnn_rnn_cache->cx_desc_, init_c_data, cudnn_rnn_cache->w_desc_,
|
|
w_data, cudnn_rnn_cache->y_desc_, out_data, cudnn_rnn_cache->hy_desc_,
|
|
last_h_data, cudnn_rnn_cache->cy_desc_, last_c_data,
|
|
cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
|
|
cudnn_rnn_cache->workspace_size_));
|
|
} else {
|
|
// for train
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardTraining(
|
|
handle, cudnn_rnn_cache->rnn_desc_, seq_len, cudnn_rnn_cache->x_desc_,
|
|
x_data, cudnn_rnn_cache->hx_desc_, init_h_data,
|
|
cudnn_rnn_cache->cx_desc_, init_c_data, cudnn_rnn_cache->w_desc_,
|
|
w_data, cudnn_rnn_cache->y_desc_, out_data, cudnn_rnn_cache->hy_desc_,
|
|
last_h_data, cudnn_rnn_cache->cy_desc_, last_c_data,
|
|
cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
|
|
cudnn_rnn_cache->workspace_size_, reserve_data, reserve_size));
|
|
}
|
|
delete cudnn_rnn_cache;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CudnnLSTMGPUGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *input = ctx.Input<Tensor>("Input");
|
|
auto *weight = ctx.Input<Tensor>("W");
|
|
auto *init_h = ctx.Input<Tensor>("InitH");
|
|
auto *init_c = ctx.Input<Tensor>("InitC");
|
|
auto *reserve = ctx.Input<Tensor>("Reserve");
|
|
auto *state_out = ctx.Input<Tensor>("StateOut");
|
|
|
|
auto *out = ctx.Input<Tensor>("Out");
|
|
auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto *last_h_grad = ctx.Input<Tensor>(framework::GradVarName("LastH"));
|
|
auto *last_c_grad = ctx.Input<Tensor>(framework::GradVarName("LastC"));
|
|
|
|
auto *in_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
auto *weight_grad = ctx.Output<Tensor>(framework::GradVarName("W"));
|
|
auto *init_h_grad = ctx.Output<Tensor>(framework::GradVarName("InitH"));
|
|
auto *init_c_grad = ctx.Output<Tensor>(framework::GradVarName("InitC"));
|
|
|
|
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto handle = dev_ctx.cudnn_handle();
|
|
|
|
auto input_dims = input->dims();
|
|
auto init_h_dims = init_h->dims();
|
|
auto init_c_dims = init_c->dims();
|
|
|
|
auto *weight_data = weight->data<T>();
|
|
auto *init_h_data = init_h->data<T>();
|
|
auto *init_c_data = init_c->data<T>();
|
|
auto *out_data = out->data<T>();
|
|
auto *out_grad_data = out_grad->data<T>();
|
|
auto *last_h_grad_data = last_h_grad->data<T>();
|
|
auto *last_c_grad_data = last_c_grad->data<T>();
|
|
|
|
math::SetConstant<paddle::platform::CUDADeviceContext, T> zero;
|
|
weight_grad->mutable_data<T>(ctx.GetPlace());
|
|
zero(dev_ctx, weight_grad, static_cast<T>(0.0));
|
|
|
|
in_grad->mutable_data<T>(input_dims, ctx.GetPlace());
|
|
auto *in_grad_data = in_grad->data<T>();
|
|
|
|
init_h_grad->mutable_data<T>(init_h_dims, ctx.GetPlace());
|
|
auto *init_h_grad_data = init_h_grad->data<T>();
|
|
|
|
init_c_grad->mutable_data<T>(init_c_dims, ctx.GetPlace());
|
|
auto *init_c_grad_data = init_c_grad->data<T>();
|
|
|
|
float dropout_prob = ctx.Attr<float>("dropout_prob");
|
|
bool is_bidirec = ctx.Attr<bool>("is_bidirec");
|
|
int hidden_size = ctx.Attr<int>("hidden_size");
|
|
int num_layers = ctx.Attr<int>("num_layers");
|
|
int seed = ctx.Attr<int>("seed");
|
|
|
|
CudnnRNNCache *cudnn_rnn_cache = new CudnnRNNCache();
|
|
|
|
auto input_w_numel = weight->numel();
|
|
auto seq_len = input_dims[0];
|
|
auto batch_size = input->dims()[1];
|
|
auto input_dim = input->dims()[2];
|
|
size_t reserve_size;
|
|
cudnnDataType_t cudnn_type = platform::ToCudnnDataType(
|
|
framework::ToDataType(std::type_index(typeid(T))));
|
|
cudnn_rnn_cache->init(handle, ctx.GetPlace(), seq_len, batch_size,
|
|
input_dim, hidden_size, num_layers, dropout_prob,
|
|
is_bidirec, seed, input_w_numel, &reserve_size,
|
|
const_cast<Tensor *>(state_out), true, cudnn_type);
|
|
|
|
auto work_data = cudnn_rnn_cache->workspace_data_.data<uint8_t>();
|
|
const uint8_t *reserve_data = reserve->data<uint8_t>();
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardData(
|
|
handle, cudnn_rnn_cache->rnn_desc_, seq_len, cudnn_rnn_cache->y_desc_,
|
|
out_data, cudnn_rnn_cache->y_desc_, out_grad_data,
|
|
cudnn_rnn_cache->hy_desc_, last_h_grad_data, cudnn_rnn_cache->cy_desc_,
|
|
last_c_grad_data, cudnn_rnn_cache->w_desc_, weight_data,
|
|
cudnn_rnn_cache->hx_desc_, init_h_data, cudnn_rnn_cache->cx_desc_,
|
|
init_c_data, cudnn_rnn_cache->x_desc_, in_grad_data,
|
|
cudnn_rnn_cache->hx_desc_, init_h_grad_data, cudnn_rnn_cache->cx_desc_,
|
|
init_c_grad_data, work_data, cudnn_rnn_cache->workspace_size_,
|
|
const_cast<uint8_t *>(reserve_data), reserve_size));
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardWeights(
|
|
handle, cudnn_rnn_cache->rnn_desc_, seq_len, cudnn_rnn_cache->x_desc_,
|
|
input->data<T>(), cudnn_rnn_cache->hx_desc_, init_h->data<T>(),
|
|
cudnn_rnn_cache->y_desc_, out->data<T>(),
|
|
cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
|
|
cudnn_rnn_cache->workspace_size_, cudnn_rnn_cache->w_desc_,
|
|
weight_grad->data<T>(), const_cast<uint8_t *>(reserve_data),
|
|
reserve_size));
|
|
delete cudnn_rnn_cache;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(cudnn_lstm, ops::CudnnLSTMGPUKernel<float>,
|
|
ops::CudnnLSTMGPUKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(cudnn_lstm_grad, ops::CudnnLSTMGPUGradKernel<float>,
|
|
ops::CudnnLSTMGPUGradKernel<double>);
|