You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
533 lines
18 KiB
533 lines
18 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/platform/dynload/cudnn.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
#include "paddle/fluid/platform/macros.h"
|
|
|
|
DECLARE_bool(cudnn_deterministic);
|
|
|
|
namespace paddle {
|
|
namespace platform {
|
|
|
|
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
|
|
switch (status) {
|
|
case CUDNN_STATUS_SUCCESS:
|
|
return "CUDNN_STATUS_SUCCESS";
|
|
case CUDNN_STATUS_NOT_INITIALIZED:
|
|
return "CUDNN_STATUS_NOT_INITIALIZED";
|
|
case CUDNN_STATUS_ALLOC_FAILED:
|
|
return "CUDNN_STATUS_ALLOC_FAILED";
|
|
case CUDNN_STATUS_BAD_PARAM:
|
|
return "CUDNN_STATUS_BAD_PARAM";
|
|
case CUDNN_STATUS_INTERNAL_ERROR:
|
|
return "CUDNN_STATUS_INTERNAL_ERROR";
|
|
case CUDNN_STATUS_INVALID_VALUE:
|
|
return "CUDNN_STATUS_INVALID_VALUE";
|
|
case CUDNN_STATUS_ARCH_MISMATCH:
|
|
return "CUDNN_STATUS_ARCH_MISMATCH";
|
|
case CUDNN_STATUS_MAPPING_ERROR:
|
|
return "CUDNN_STATUS_MAPPING_ERROR";
|
|
case CUDNN_STATUS_EXECUTION_FAILED:
|
|
return "CUDNN_STATUS_EXECUTION_FAILED";
|
|
case CUDNN_STATUS_NOT_SUPPORTED:
|
|
return "CUDNN_STATUS_NOT_SUPPORTED";
|
|
case CUDNN_STATUS_LICENSE_ERROR:
|
|
return "CUDNN_STATUS_LICENSE_ERROR";
|
|
default:
|
|
return "Unknown cudnn error number";
|
|
}
|
|
}
|
|
|
|
#define CUDNN_VERSION_MIN(major, minor, patch) \
|
|
(CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))
|
|
|
|
enum class DataLayout { // Not use
|
|
kNHWC,
|
|
kNCHW,
|
|
kNCDHW,
|
|
kNDHWC, // add, liyamei
|
|
kNCHW_VECT_C,
|
|
};
|
|
|
|
enum class PoolingMode {
|
|
kMaximum,
|
|
kMaximumDeterministic,
|
|
kAverageExclusive,
|
|
kAverageInclusive,
|
|
};
|
|
|
|
enum class ActivationMode {
|
|
kNone, // activation identity
|
|
kSigmoid,
|
|
kRelu,
|
|
kRelu6,
|
|
kReluX,
|
|
kTanh,
|
|
kBandPass,
|
|
};
|
|
|
|
#if CUDNN_VERSION < 6000
|
|
#pragma message "CUDNN version under 6.0 is supported at best effort."
|
|
#pragma message "We strongly encourage you to move to 6.0 and above."
|
|
#pragma message "This message is intended to annoy you enough to update."
|
|
#pragma message \
|
|
"please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
|
|
|
|
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
|
|
switch (mode) {
|
|
case PoolingMode::kMaximumDeterministic:
|
|
return CUDNN_POOLING_MAX;
|
|
case PoolingMode::kAverageExclusive:
|
|
return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
|
|
case PoolingMode::kAverageInclusive:
|
|
return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
|
|
case PoolingMode::kMaximum:
|
|
return CUDNN_POOLING_MAX;
|
|
default:
|
|
PADDLE_THROW(
|
|
platform::errors::Unimplemented("Unexpected CUDNN pooling mode."));
|
|
}
|
|
}
|
|
#else
|
|
|
|
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
|
|
switch (mode) {
|
|
case PoolingMode::kMaximumDeterministic:
|
|
return CUDNN_POOLING_MAX_DETERMINISTIC;
|
|
case PoolingMode::kAverageExclusive:
|
|
return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
|
|
case PoolingMode::kAverageInclusive:
|
|
return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
|
|
case PoolingMode::kMaximum:
|
|
return CUDNN_POOLING_MAX;
|
|
default:
|
|
PADDLE_THROW(
|
|
platform::errors::Unimplemented("Unexpected CUDNN pooling mode."));
|
|
}
|
|
}
|
|
#endif // CUDNN_VERSION < 6000
|
|
|
|
inline ActivationMode StringToActivationMode(const std::string& str) {
|
|
if (str == "identity") {
|
|
return ActivationMode::kNone;
|
|
} else if (str == "sigmoid") {
|
|
return ActivationMode::kSigmoid;
|
|
} else if (str == "relu") {
|
|
return ActivationMode::kRelu;
|
|
} else if (str == "relu6") {
|
|
return ActivationMode::kRelu6;
|
|
} else if (str == "relux") {
|
|
return ActivationMode::kReluX;
|
|
} else if (str == "tanh") {
|
|
return ActivationMode::kTanh;
|
|
} else if (str == "bandpass") {
|
|
return ActivationMode::kBandPass;
|
|
} else {
|
|
PADDLE_THROW(platform::errors::Unimplemented(
|
|
"Unknown CUDNN activation string: %s.", str));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class CudnnDataType;
|
|
|
|
template <>
|
|
class CudnnDataType<float16> {
|
|
public:
|
|
static const cudnnDataType_t type = CUDNN_DATA_HALF;
|
|
// The scaling param type is float for HALF and FLOAT tensors
|
|
using ScalingParamType = const float;
|
|
using BatchNormParamType = float;
|
|
static ScalingParamType* kOne() {
|
|
static ScalingParamType v = 1.0;
|
|
return &v;
|
|
}
|
|
static ScalingParamType* kZero() {
|
|
static ScalingParamType v = 0.0;
|
|
return &v;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
class CudnnDataType<float> {
|
|
public:
|
|
static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
|
|
using ScalingParamType = const float;
|
|
using BatchNormParamType = float;
|
|
static ScalingParamType* kOne() {
|
|
static ScalingParamType v = 1.0;
|
|
return &v;
|
|
}
|
|
static ScalingParamType* kZero() {
|
|
static ScalingParamType v = 0.0;
|
|
return &v;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
class CudnnDataType<double> {
|
|
public:
|
|
static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
|
|
using ScalingParamType = const double;
|
|
using BatchNormParamType = double;
|
|
static ScalingParamType* kOne() {
|
|
static ScalingParamType v = 1.0;
|
|
return &v;
|
|
}
|
|
static ScalingParamType* kZero() {
|
|
static ScalingParamType v = 0.0;
|
|
return &v;
|
|
}
|
|
};
|
|
|
|
inline cudnnTensorFormat_t GetCudnnTensorFormat(
|
|
const DataLayout& order) { // Not use
|
|
switch (order) {
|
|
case DataLayout::kNHWC:
|
|
return CUDNN_TENSOR_NHWC;
|
|
case DataLayout::kNCHW:
|
|
return CUDNN_TENSOR_NCHW;
|
|
case DataLayout::kNCDHW:
|
|
return CUDNN_TENSOR_NCHW; // NOTE: cudnn treat NdTensor as the same
|
|
case DataLayout::kNDHWC:
|
|
return CUDNN_TENSOR_NHWC; // add, liyamei
|
|
default:
|
|
PADDLE_THROW(platform::errors::Unimplemented(
|
|
"CUDNN has no equivalent dataLayout for input order."));
|
|
}
|
|
return CUDNN_TENSOR_NCHW;
|
|
}
|
|
|
|
class ScopedTensorDescriptor {
|
|
public:
|
|
ScopedTensorDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&desc_));
|
|
}
|
|
~ScopedTensorDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(desc_));
|
|
}
|
|
|
|
inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
|
|
const cudnnDataType_t type,
|
|
const std::vector<int>& dims,
|
|
const int groups = 1) {
|
|
// the format is not used now, will add later
|
|
std::vector<int> strides(dims.size());
|
|
strides[dims.size() - 1] = 1;
|
|
for (int i = dims.size() - 2; i >= 0; i--) {
|
|
strides[i] = dims[i + 1] * strides[i + 1];
|
|
}
|
|
// Update tensor descriptor dims setting if groups > 1
|
|
// NOTE: Here, Assume using NCHW or NCDHW order
|
|
std::vector<int> dims_with_group(dims.begin(), dims.end());
|
|
if (groups > 1) {
|
|
dims_with_group[1] = dims_with_group[1] / groups;
|
|
}
|
|
|
|
if (dims.size() == 4) {
|
|
if (format == CUDNN_TENSOR_NCHW) {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
|
|
desc_, type, dims_with_group.size(), dims_with_group.data(),
|
|
strides.data()));
|
|
} else { // CUDNN_TENSOR_NHWC
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensor4dDescriptor(
|
|
desc_, format, type, dims[0], dims[3], dims[1], dims[2]));
|
|
}
|
|
} else if (dims.size() == 5) {
|
|
if (format == CUDNN_TENSOR_NCHW) {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
|
|
desc_, type, dims_with_group.size(), dims_with_group.data(),
|
|
strides.data()));
|
|
} else { // CUDNN_TENSOR_NHWC
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
|
|
desc_, format, type, dims.size(), dims.data()));
|
|
}
|
|
}
|
|
return desc_;
|
|
}
|
|
|
|
template <typename T>
|
|
inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
|
|
const std::vector<int>& dims,
|
|
const int groups = 1) {
|
|
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
|
|
groups);
|
|
}
|
|
|
|
private:
|
|
cudnnTensorDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
|
|
};
|
|
|
|
class ScopedFilterDescriptor {
|
|
public:
|
|
ScopedFilterDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&desc_));
|
|
}
|
|
~ScopedFilterDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(desc_));
|
|
}
|
|
|
|
inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
|
|
const cudnnDataType_t type,
|
|
const std::vector<int>& kernel,
|
|
const int groups = 1) {
|
|
// filter layout: MCHW(MCDHW), where M is the number of
|
|
// output image channels, C is the number of input image channels,
|
|
// D is the depth of the filter, H is the height of the filter, and W is the
|
|
// width of the filter.
|
|
std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
|
|
if (groups > 1) {
|
|
kernel_with_group[0] /= groups;
|
|
// NOTE: input filter(C) of the filter is already asserted to be C/groups.
|
|
}
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
|
|
desc_, type, format, kernel_with_group.size(),
|
|
kernel_with_group.data()));
|
|
return desc_;
|
|
}
|
|
|
|
template <typename T>
|
|
inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
|
|
const std::vector<int>& kernel,
|
|
const int groups = 1) {
|
|
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
|
|
kernel, groups);
|
|
}
|
|
|
|
private:
|
|
cudnnFilterDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
|
|
};
|
|
|
|
class ScopedConvolutionDescriptor {
|
|
public:
|
|
ScopedConvolutionDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnCreateConvolutionDescriptor(&desc_));
|
|
}
|
|
~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnDestroyConvolutionDescriptor(desc_));
|
|
}
|
|
|
|
inline cudnnConvolutionDescriptor_t descriptor(
|
|
cudnnDataType_t type, const std::vector<int>& pads,
|
|
const std::vector<int>& strides, const std::vector<int>& dilations) {
|
|
PADDLE_ENFORCE_EQ(pads.size(), strides.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The size of pads and strides should be equal. But "
|
|
"received size of pads is %d, size of strides is %d.",
|
|
pads.size(), strides.size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
pads.size(), dilations.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The size of pads and dilations should be equal. But received size "
|
|
"of pads is %d, size of dilations is %d.",
|
|
pads.size(), dilations.size()));
|
|
|
|
#if !CUDNN_VERSION_MIN(6, 0, 0)
|
|
// cudnn v5 does not support dilation conv, the argument is called upscale
|
|
// instead of dilations and it is must be one.
|
|
for (size_t i = 0; i < dilations.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(dilations[i], 1,
|
|
platform::errors::InvalidArgument(
|
|
"Dilations conv is not supported in this cuDNN "
|
|
"version(%d.%d.%d).",
|
|
CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
|
|
CUDNN_VERSION % 100));
|
|
}
|
|
#endif
|
|
|
|
cudnnDataType_t compute_type =
|
|
(type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
|
|
desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
|
|
CUDNN_CROSS_CORRELATION, compute_type));
|
|
return desc_;
|
|
}
|
|
|
|
template <typename T>
|
|
inline cudnnConvolutionDescriptor_t descriptor(
|
|
const std::vector<int>& pads, const std::vector<int>& strides,
|
|
const std::vector<int>& dilations) {
|
|
return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
|
|
}
|
|
|
|
private:
|
|
cudnnConvolutionDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
|
|
};
|
|
|
|
class ScopedPoolingDescriptor {
|
|
public:
|
|
ScopedPoolingDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreatePoolingDescriptor(&desc_));
|
|
}
|
|
~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyPoolingDescriptor(desc_));
|
|
}
|
|
|
|
inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
|
|
const std::vector<int>& kernel,
|
|
const std::vector<int>& pads,
|
|
const std::vector<int>& strides) {
|
|
PADDLE_ENFORCE_EQ(kernel.size(), pads.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The size of kernel and pads should be equal. But "
|
|
"received size of kernel is %d, size of pads is %d.",
|
|
kernel.size(), pads.size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
kernel.size(), strides.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The size of kernel and strides should be equal. But "
|
|
"received size of kernel is %d, size of strides is %d.",
|
|
kernel.size(), strides.size()));
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetPoolingNdDescriptor(
|
|
desc_, (GetPoolingMode(mode)),
|
|
CUDNN_PROPAGATE_NAN, // Always propagate nans.
|
|
kernel.size(), kernel.data(), pads.data(), strides.data()));
|
|
return desc_;
|
|
}
|
|
|
|
private:
|
|
cudnnPoolingDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
|
|
};
|
|
|
|
class ScopedSpatialTransformerDescriptor {
|
|
public:
|
|
ScopedSpatialTransformerDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
|
|
}
|
|
~ScopedSpatialTransformerDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
|
|
}
|
|
|
|
template <typename T>
|
|
inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
|
|
const int dimA[]) {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetSpatialTransformerNdDescriptor(
|
|
desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
|
|
return desc_;
|
|
}
|
|
|
|
private:
|
|
cudnnSpatialTransformerDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
|
|
};
|
|
|
|
class ScopedActivationDescriptor {
|
|
public:
|
|
ScopedActivationDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnCreateActivationDescriptor(&desc_));
|
|
}
|
|
~ScopedActivationDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnDestroyActivationDescriptor(desc_));
|
|
}
|
|
|
|
template <typename T>
|
|
inline cudnnActivationDescriptor_t descriptor(
|
|
const std::string& act, double value_max = static_cast<double>(0.)) {
|
|
double relu_ceiling = 0.0;
|
|
ActivationMode activation_mode = StringToActivationMode(act);
|
|
cudnnActivationMode_t mode;
|
|
switch (activation_mode) {
|
|
#if CUDNN_VERSION >= 7100
|
|
case ActivationMode::kNone:
|
|
mode = CUDNN_ACTIVATION_IDENTITY;
|
|
break;
|
|
#endif
|
|
case ActivationMode::kRelu6:
|
|
relu_ceiling = 6.0;
|
|
mode = CUDNN_ACTIVATION_CLIPPED_RELU;
|
|
break;
|
|
case ActivationMode::kReluX:
|
|
relu_ceiling = value_max;
|
|
mode = CUDNN_ACTIVATION_CLIPPED_RELU;
|
|
break;
|
|
case ActivationMode::kRelu:
|
|
mode = CUDNN_ACTIVATION_RELU;
|
|
break;
|
|
case ActivationMode::kSigmoid:
|
|
mode = CUDNN_ACTIVATION_SIGMOID;
|
|
break;
|
|
case ActivationMode::kTanh:
|
|
mode = CUDNN_ACTIVATION_TANH;
|
|
break;
|
|
default:
|
|
PADDLE_THROW(platform::errors::Unimplemented(
|
|
"Unrecognized CUDNN activation mode: %d.",
|
|
static_cast<int>(activation_mode)));
|
|
}
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
|
|
desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
|
|
return desc_;
|
|
}
|
|
|
|
private:
|
|
cudnnActivationDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
|
|
};
|
|
|
|
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
|
|
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
|
|
use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
|
|
#ifdef PADDLE_WITH_CUDA
|
|
if (use_cudnn) {
|
|
auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
|
|
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
|
|
}
|
|
#endif
|
|
return use_cudnn;
|
|
}
|
|
|
|
#if CUDNN_VERSION >= 7001
|
|
class ScopedCTCLossDescriptor {
|
|
public:
|
|
ScopedCTCLossDescriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateCTCLossDescriptor(&desc_));
|
|
}
|
|
~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyCTCLossDescriptor(desc_));
|
|
}
|
|
|
|
template <typename T>
|
|
inline cudnnCTCLossDescriptor_t descriptor() {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
|
|
return desc_;
|
|
}
|
|
|
|
private:
|
|
cudnnCTCLossDescriptor_t desc_;
|
|
DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
|
|
};
|
|
#endif
|
|
|
|
} // namespace platform
|
|
} // namespace paddle
|