You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
5.4 KiB
157 lines
5.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.v2 as paddle
|
|
import paddle.v2.fluid as fluid
|
|
import unittest
|
|
import os
|
|
|
|
|
|
def main(use_cuda, is_sparse, parallel):
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
return
|
|
|
|
PASS_NUM = 100
|
|
EMBED_SIZE = 32
|
|
HIDDEN_SIZE = 256
|
|
N = 5
|
|
BATCH_SIZE = 32
|
|
IS_SPARSE = is_sparse
|
|
|
|
def __network__(words):
|
|
embed_first = fluid.layers.embedding(
|
|
input=words[0],
|
|
size=[dict_size, EMBED_SIZE],
|
|
dtype='float32',
|
|
is_sparse=IS_SPARSE,
|
|
param_attr='shared_w')
|
|
embed_second = fluid.layers.embedding(
|
|
input=words[1],
|
|
size=[dict_size, EMBED_SIZE],
|
|
dtype='float32',
|
|
is_sparse=IS_SPARSE,
|
|
param_attr='shared_w')
|
|
embed_third = fluid.layers.embedding(
|
|
input=words[2],
|
|
size=[dict_size, EMBED_SIZE],
|
|
dtype='float32',
|
|
is_sparse=IS_SPARSE,
|
|
param_attr='shared_w')
|
|
embed_forth = fluid.layers.embedding(
|
|
input=words[3],
|
|
size=[dict_size, EMBED_SIZE],
|
|
dtype='float32',
|
|
is_sparse=IS_SPARSE,
|
|
param_attr='shared_w')
|
|
|
|
concat_embed = fluid.layers.concat(
|
|
input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
|
|
hidden1 = fluid.layers.fc(input=concat_embed,
|
|
size=HIDDEN_SIZE,
|
|
act='sigmoid')
|
|
predict_word = fluid.layers.fc(input=hidden1,
|
|
size=dict_size,
|
|
act='softmax')
|
|
cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
return avg_cost
|
|
|
|
word_dict = paddle.dataset.imikolov.build_dict()
|
|
dict_size = len(word_dict)
|
|
|
|
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
|
|
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
|
|
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
|
|
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
|
|
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
|
|
|
|
if not parallel:
|
|
avg_cost = __network__(
|
|
[first_word, second_word, third_word, forth_word, next_word])
|
|
else:
|
|
places = fluid.layers.get_places()
|
|
pd = fluid.layers.ParallelDo(places)
|
|
with pd.do():
|
|
avg_cost = __network__(
|
|
map(pd.read_input, [
|
|
first_word, second_word, third_word, forth_word, next_word
|
|
]))
|
|
pd.write_output(avg_cost)
|
|
|
|
avg_cost = fluid.layers.mean(x=pd())
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(
|
|
feed_list=[first_word, second_word, third_word, forth_word, next_word],
|
|
place=place)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
for data in train_reader():
|
|
avg_cost_np = exe.run(fluid.default_main_program(),
|
|
feed=feeder.feed(data),
|
|
fetch_list=[avg_cost])
|
|
if avg_cost_np[0] < 5.0:
|
|
return
|
|
raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))
|
|
|
|
|
|
FULL_TEST = os.getenv('FULL_TEST',
|
|
'0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
|
|
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
|
|
|
|
|
|
class W2VTest(unittest.TestCase):
|
|
pass
|
|
|
|
|
|
def inject_test_method(use_cuda, is_sparse, parallel):
|
|
fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
|
|
if is_sparse else "dense", "parallel"
|
|
if parallel else "normal")
|
|
|
|
def __impl__(*args, **kwargs):
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
scope = fluid.core.Scope()
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(prog, startup_prog):
|
|
main(use_cuda=use_cuda, is_sparse=is_sparse, parallel=parallel)
|
|
|
|
if use_cuda and is_sparse and parallel:
|
|
fn = __impl__
|
|
else:
|
|
# skip the other test when on CI server
|
|
fn = unittest.skipUnless(
|
|
condition=FULL_TEST, reason=SKIP_REASON)(__impl__)
|
|
|
|
setattr(W2VTest, fn_name, fn)
|
|
|
|
|
|
for use_cuda in (False, True):
|
|
for is_sparse in (False, True):
|
|
for parallel in (False, True):
|
|
inject_test_method(use_cuda, is_sparse, parallel)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|