You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							164 lines
						
					
					
						
							4.8 KiB
						
					
					
				
			
		
		
	
	
							164 lines
						
					
					
						
							4.8 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include <algorithm>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class SliceKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
 | 
						|
    switch (rank) {
 | 
						|
      case 1:
 | 
						|
        SliceCompute<1>(ctx);
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        SliceCompute<2>(ctx);
 | 
						|
        break;
 | 
						|
      case 3:
 | 
						|
        SliceCompute<3>(ctx);
 | 
						|
        break;
 | 
						|
      case 4:
 | 
						|
        SliceCompute<4>(ctx);
 | 
						|
        break;
 | 
						|
      case 5:
 | 
						|
        SliceCompute<5>(ctx);
 | 
						|
        break;
 | 
						|
      case 6:
 | 
						|
        SliceCompute<6>(ctx);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <size_t D>
 | 
						|
  void SliceCompute(const framework::ExecutionContext& context) const {
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
    auto in = context.Input<framework::Tensor>("Input");
 | 
						|
    auto out = context.Output<framework::Tensor>("Out");
 | 
						|
    out->mutable_data<T>(context.GetPlace());
 | 
						|
    auto out_dims = out->dims();
 | 
						|
    auto in_dims = in->dims();
 | 
						|
    auto axes = context.Attr<std::vector<int>>("axes");
 | 
						|
    auto starts = context.Attr<std::vector<int>>("starts");
 | 
						|
 | 
						|
    auto offsets = Eigen::array<int, D>();
 | 
						|
    auto extents = Eigen::array<int, D>();
 | 
						|
    for (size_t i = 0; i < D; ++i) {
 | 
						|
      offsets[i] = 0;
 | 
						|
      extents[i] = out_dims[i];
 | 
						|
    }
 | 
						|
    int start;
 | 
						|
    for (size_t i = 0; i < axes.size(); ++i) {
 | 
						|
      start = starts[i];
 | 
						|
      if (start < 0) {
 | 
						|
        start = (start + in_dims[axes[i]]);
 | 
						|
      }
 | 
						|
      start = std::max(start, 0);
 | 
						|
      offsets[axes[i]] = start;
 | 
						|
    }
 | 
						|
    auto in_t =
 | 
						|
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
 | 
						|
            *in);
 | 
						|
    auto out_t =
 | 
						|
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
 | 
						|
            *out);
 | 
						|
    out_t.device(place) = in_t.slice(offsets, extents);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class SliceGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    size_t rank = ctx.Input<framework::Tensor>(framework::GradVarName("Out"))
 | 
						|
                      ->dims()
 | 
						|
                      .size();
 | 
						|
    switch (rank) {
 | 
						|
      case 1:
 | 
						|
        SliceCompute<1>(ctx);
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        SliceCompute<2>(ctx);
 | 
						|
        break;
 | 
						|
      case 3:
 | 
						|
        SliceCompute<3>(ctx);
 | 
						|
        break;
 | 
						|
      case 4:
 | 
						|
        SliceCompute<4>(ctx);
 | 
						|
        break;
 | 
						|
      case 5:
 | 
						|
        SliceCompute<5>(ctx);
 | 
						|
        break;
 | 
						|
      case 6:
 | 
						|
        SliceCompute<6>(ctx);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <size_t D>
 | 
						|
  void SliceCompute(const framework::ExecutionContext& context) const {
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
    auto* d_out =
 | 
						|
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* d_input =
 | 
						|
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
 | 
						|
    d_input->mutable_data<T>(context.GetPlace());
 | 
						|
    auto out_dims = d_out->dims();
 | 
						|
    auto in_dims = d_input->dims();
 | 
						|
    auto axes = context.Attr<std::vector<int>>("axes");
 | 
						|
    auto starts = context.Attr<std::vector<int>>("starts");
 | 
						|
 | 
						|
    auto offsets = Eigen::array<int, D>();
 | 
						|
    auto extents = Eigen::array<int, D>();
 | 
						|
    for (size_t i = 0; i < D; ++i) {
 | 
						|
      offsets[i] = 0;
 | 
						|
      extents[i] = out_dims[i];
 | 
						|
    }
 | 
						|
    int start;
 | 
						|
    for (size_t i = 0; i < axes.size(); ++i) {
 | 
						|
      start = starts[i];
 | 
						|
      if (start < 0) {
 | 
						|
        start = (start + in_dims[axes[i]]);
 | 
						|
      }
 | 
						|
      start = std::max(start, 0);
 | 
						|
      offsets[axes[i]] = start;
 | 
						|
    }
 | 
						|
    Eigen::array<std::pair<int, int>, D> paddings;
 | 
						|
    for (size_t i = 0; i < paddings.size(); ++i) {
 | 
						|
      paddings[i].first = offsets[i];
 | 
						|
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
 | 
						|
    }
 | 
						|
    auto d_in_t =
 | 
						|
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
 | 
						|
            *d_input);
 | 
						|
    auto d_out_t =
 | 
						|
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
 | 
						|
            *d_out);
 | 
						|
    d_in_t.device(place) = d_out_t.pad(paddings, 0);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |