You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
450 lines
14 KiB
450 lines
14 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
#include <set>
|
|
#include <string>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/memory/memory.h"
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "paddle/fluid/framework/rw_lock.h"
|
|
#include "paddle/fluid/platform/cuda_device_guard.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace platform {
|
|
|
|
DeviceContextPool* DeviceContextPool::pool = nullptr;
|
|
|
|
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
|
|
auto it = device_contexts_.find(place);
|
|
if (it == device_contexts_.end()) {
|
|
PADDLE_THROW(
|
|
"Place %s is not supported, Please re-compile with WITH_GPU "
|
|
"option",
|
|
place);
|
|
}
|
|
return it->second.get().get();
|
|
}
|
|
|
|
template <typename DevCtx, typename PlaceType>
|
|
inline void EmplaceDeviceContext(
|
|
std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
|
|
map_ptr,
|
|
platform::Place p) {
|
|
using PtrType = std::unique_ptr<DeviceContext>;
|
|
map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
|
|
// lazy evaluation. i.e., only create device context at
|
|
// first `Get`
|
|
return PtrType(new DevCtx(boost::get<PlaceType>(p)));
|
|
}));
|
|
}
|
|
|
|
DeviceContextPool::DeviceContextPool(
|
|
const std::vector<platform::Place>& places) {
|
|
PADDLE_ENFORCE_GT(places.size(), 0);
|
|
std::set<Place> set;
|
|
for (auto& p : places) {
|
|
set.insert(p);
|
|
}
|
|
|
|
for (auto& p : set) {
|
|
if (platform::is_cpu_place(p)) {
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
|
|
#else
|
|
EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
|
|
#endif
|
|
} else if (platform::is_gpu_place(p)) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
|
|
#else
|
|
PADDLE_THROW(
|
|
"'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
|
|
"option");
|
|
#endif
|
|
} else if (platform::is_cuda_pinned_place(p)) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
|
|
&device_contexts_, p);
|
|
#else
|
|
PADDLE_THROW(
|
|
"'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
|
|
"option");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
|
|
const platform::Place& place, const cudaStream_t& stream) {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(place));
|
|
auto place_stream = std::make_pair(place, stream);
|
|
std::unique_lock<std::mutex> lock(mtx_);
|
|
auto it = device_allocator_.find(place_stream);
|
|
if (it == device_allocator_.end()) {
|
|
auto tmp_allocator = new TemporaryAllocator(place);
|
|
tmp_allocator->SetCallback([stream]() {
|
|
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
|
|
PADDLE_ENFORCE(cudaGetLastError());
|
|
});
|
|
device_allocator_[place_stream].reset(tmp_allocator);
|
|
return *tmp_allocator;
|
|
} else {
|
|
return *it->second;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
|
|
const platform::CUDADeviceContext& dev_ctx) {
|
|
return Get(dev_ctx.GetPlace(), dev_ctx.stream());
|
|
}
|
|
#endif
|
|
|
|
template <>
|
|
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
|
|
const platform::CPUDeviceContext& dev_ctx) {
|
|
return cpu_allocator_;
|
|
}
|
|
|
|
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
|
|
const platform::Place& place) {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
|
|
return cpu_allocator_;
|
|
}
|
|
|
|
CPUDeviceContext::CPUDeviceContext() {
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
}
|
|
|
|
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
}
|
|
|
|
Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
|
|
return eigen_device_.get();
|
|
}
|
|
|
|
Place CPUDeviceContext::GetPlace() const { return place_; }
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
class EigenCudaStreamDevice : public Eigen::StreamInterface {
|
|
public:
|
|
EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
|
|
Eigen::initializeDeviceProp();
|
|
}
|
|
~EigenCudaStreamDevice() override {}
|
|
|
|
void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
|
|
stream_ = cuda_stream;
|
|
place_ = place;
|
|
device_prop_ = &Eigen::m_deviceProperties[place.device];
|
|
}
|
|
|
|
const cudaStream_t& stream() const override { return *stream_; }
|
|
|
|
const cudaDeviceProp& deviceProperties() const override {
|
|
return *device_prop_;
|
|
}
|
|
|
|
void* allocate(size_t num_bytes) const override {
|
|
if (UNLIKELY(num_bytes == 0)) {
|
|
return nullptr;
|
|
}
|
|
auto buf = paddle::memory::Alloc(place_, num_bytes,
|
|
memory::Allocator::kScratchpad);
|
|
void* retv = buf->ptr();
|
|
{
|
|
std::lock_guard<std::mutex> lock(mtx_);
|
|
allocations_.emplace(retv, std::move(buf));
|
|
}
|
|
return retv;
|
|
}
|
|
|
|
void deallocate(void* buffer) const override {
|
|
if (LIKELY(buffer)) {
|
|
std::lock_guard<std::mutex> lock(mtx_);
|
|
allocations_.erase(buffer);
|
|
}
|
|
}
|
|
|
|
void* scratchpad() const override {
|
|
if (scratch_ == NULL) {
|
|
scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
|
|
}
|
|
return scratch_;
|
|
}
|
|
|
|
unsigned int* semaphore() const override {
|
|
if (semaphore_ == NULL) {
|
|
char* scratch =
|
|
static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
|
|
semaphore_ = reinterpret_cast<unsigned int*>(scratch);
|
|
PADDLE_ENFORCE(
|
|
cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
|
|
}
|
|
return semaphore_;
|
|
}
|
|
|
|
private:
|
|
CUDAPlace place_;
|
|
const cudaStream_t* stream_; // not owned;
|
|
const cudaDeviceProp* device_prop_; // not owned;
|
|
mutable void* scratch_;
|
|
mutable unsigned int* semaphore_;
|
|
mutable std::mutex mtx_; // to protect allocations_
|
|
mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
|
|
};
|
|
|
|
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
|
|
: workspace_(nullptr), stream_(stream), place_(place) {
|
|
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
|
|
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
|
|
}
|
|
|
|
CudnnHolder::~CudnnHolder() {
|
|
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
|
|
}
|
|
|
|
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
|
|
if (required_workspace_len <= WorkspaceSize()) {
|
|
return;
|
|
}
|
|
if (workspace_ != nullptr) {
|
|
// Maybe someone is using the current workspace
|
|
PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
|
|
workspace_.reset();
|
|
}
|
|
workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
|
|
paddle::memory::Allocator::kScratchpad);
|
|
}
|
|
|
|
CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
|
|
: place_(place), cudnn_holder_(nullptr) {
|
|
CUDADeviceGuard guard(place_.device);
|
|
compute_capability_ = GetCUDAComputeCapability(place_.device);
|
|
multi_process_ = GetCUDAMultiProcessors(place_.device);
|
|
max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
|
|
PADDLE_ENFORCE(cudaStreamCreate(&stream_));
|
|
eigen_stream_.reset(new EigenCudaStreamDevice());
|
|
eigen_stream_->Reinitialize(&stream_, place);
|
|
eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
|
|
cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));
|
|
|
|
if (TensorCoreAvailable()) {
|
|
#if CUDA_VERSION >= 9000
|
|
cublas_tensor_core_handle_.reset(
|
|
new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
|
|
#endif
|
|
}
|
|
|
|
if (dynload::HasCUDNN()) {
|
|
cudnn_holder_.reset(new CudnnHolder(&stream_, place));
|
|
}
|
|
|
|
driver_version_ = GetCUDADriverVersion(place_.device);
|
|
runtime_version_ = GetCUDARuntimeVersion(place_.device);
|
|
|
|
LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
|
|
<< ", CUDA Capability: " << compute_capability_
|
|
<< ", Driver API Version: " << driver_version_ / 1000
|
|
<< "." << (driver_version_ % 100) / 10
|
|
<< ", Runtime API Version: "
|
|
<< runtime_version_ / 1000 << "."
|
|
<< (runtime_version_ % 100) / 10;
|
|
size_t cudnn_dso_ver = dynload::cudnnGetVersion();
|
|
LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
|
|
<< ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
|
|
<< (cudnn_dso_ver % 100) / 10 << ".";
|
|
|
|
{
|
|
// Check CUDA/CUDNN version compatiblity
|
|
auto local_cuda_version = runtime_version_ / 100;
|
|
auto compile_cuda_version = CUDA_VERSION / 100;
|
|
if (local_cuda_version < compile_cuda_version) {
|
|
LOG_FIRST_N(WARNING, 1)
|
|
<< "WARNING: device: " << place_.device
|
|
<< ". The installed Paddle is compiled with CUDA "
|
|
<< compile_cuda_version / 10 << "." << compile_cuda_version % 10
|
|
<< ", but CUDA runtime version in your machine is "
|
|
<< local_cuda_version / 10 << "." << local_cuda_version % 10
|
|
<< ", which may cause serious incompatible bug. "
|
|
<< "Please recompile or reinstall Paddle with compatible CUDA "
|
|
"version.";
|
|
}
|
|
|
|
if (dynload::HasCUDNN()) {
|
|
auto local_cudnn_version = cudnn_dso_ver / 100;
|
|
auto compile_cudnn_version = CUDNN_VERSION / 100;
|
|
if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
|
|
LOG_FIRST_N(WARNING, 1)
|
|
<< "WARNING: device: " << place_.device
|
|
<< ". The installed Paddle is compiled with CUDNN "
|
|
<< compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
|
|
<< ", but CUDNN version in your machine is "
|
|
<< local_cudnn_version / 10 << "." << local_cudnn_version % 10
|
|
<< ", which may cause serious incompatible bug. "
|
|
<< "Please recompile or reinstall Paddle with compatible CUDNN "
|
|
"version.";
|
|
}
|
|
}
|
|
}
|
|
|
|
callback_manager_.reset(new StreamCallbackManager(stream_));
|
|
}
|
|
|
|
CUDADeviceContext::~CUDADeviceContext() {
|
|
SetDeviceId(place_.device);
|
|
Wait();
|
|
WaitStreamCallback();
|
|
cublas_handle_.reset();
|
|
cublas_tensor_core_handle_.reset();
|
|
eigen_stream_.reset();
|
|
eigen_device_.reset();
|
|
PADDLE_ENFORCE(cudaStreamDestroy(stream_));
|
|
}
|
|
|
|
Place CUDADeviceContext::GetPlace() const { return place_; }
|
|
|
|
void CUDADeviceContext::Wait() const {
|
|
auto& allocator =
|
|
DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
|
|
allocator.Release([this]() {
|
|
PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
|
|
PADDLE_ENFORCE(cudaGetLastError());
|
|
});
|
|
}
|
|
|
|
int CUDADeviceContext::GetComputeCapability() const {
|
|
return compute_capability_;
|
|
}
|
|
|
|
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
|
|
return multi_process_ * max_threads_per_mp_;
|
|
}
|
|
|
|
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
|
|
return eigen_device_.get();
|
|
}
|
|
|
|
bool CUDADeviceContext::tensor_core_available() const {
|
|
return cublas_tensor_core_handle_ != nullptr;
|
|
}
|
|
|
|
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
|
|
return cudnn_holder_->cudnn_handle();
|
|
}
|
|
|
|
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
|
|
return CudnnWorkspaceHandle(cudnn_holder_.get());
|
|
}
|
|
|
|
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
|
|
|
|
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
}
|
|
|
|
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
|
|
: place_(place) {
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
}
|
|
|
|
Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
|
|
return eigen_device_.get();
|
|
}
|
|
|
|
Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
|
|
#endif
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
|
|
: CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
|
|
p_blobmap_.reset(new BlobMap());
|
|
p_mutex_.reset(new std::mutex());
|
|
}
|
|
|
|
namespace {
|
|
// Current thread's id.
|
|
thread_local int cur_thread_id = 0;
|
|
}
|
|
|
|
void set_cur_thread_id(int tid) { cur_thread_id = tid; }
|
|
int get_cur_thread_id(void) { return cur_thread_id; }
|
|
|
|
void MKLDNNDeviceContext::SetBlob(const std::string& name,
|
|
std::shared_ptr<void> data) const {
|
|
BlobMap* pMap = p_blobmap_.get();
|
|
std::shared_ptr<KeyBlob> pBlob = nullptr;
|
|
|
|
int tid = platform::get_cur_thread_id();
|
|
|
|
std::lock_guard<std::mutex> lock(*p_mutex_);
|
|
|
|
// Find KeyBlob for current thread
|
|
auto map_it = pMap->find(tid);
|
|
|
|
if (map_it == pMap->end()) {
|
|
// 1st time to set blob in current thread
|
|
pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
|
|
(*pMap)[tid] = pBlob;
|
|
} else {
|
|
pBlob = map_it->second;
|
|
}
|
|
|
|
// Find Key in found (or newly created) KeyBlob
|
|
auto key_it = pBlob->find(name);
|
|
|
|
if (key_it == pBlob->end()) {
|
|
(*pBlob)[name] = data; // create new blob
|
|
} else {
|
|
key_it->second = data; // set data to existing blob
|
|
}
|
|
|
|
// lock will be automatically released when out of scope
|
|
return;
|
|
}
|
|
|
|
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
|
|
const std::string& name) const {
|
|
BlobMap* pMap = p_blobmap_.get();
|
|
std::shared_ptr<KeyBlob> pBlob = nullptr;
|
|
|
|
int tid = platform::get_cur_thread_id();
|
|
|
|
std::lock_guard<std::mutex> lock(*p_mutex_);
|
|
|
|
// Find KeyBlob for current thread firstly
|
|
auto map_it = pMap->find(tid);
|
|
if (map_it == pMap->end()) return nullptr;
|
|
pBlob = map_it->second;
|
|
|
|
// Find Blob via name
|
|
auto key_it = pBlob->find(name);
|
|
|
|
if (key_it == pBlob->end()) return nullptr;
|
|
|
|
// lock will be automatically released when out of scope
|
|
return key_it->second;
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace platform
|
|
} // namespace paddle
|