You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/concat_test.cc

450 lines
14 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
/**
* case 1:
* inputs:
* t_a.shape: [2, 3, 4]
* t_b.shape: [3, 3, 4]
* output:
* out.shape: [5, 3, 4]
*/
template <typename DeviceContext, typename Place>
void ConcatCase1(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({3, 3, 4});
auto dim_out = paddle::framework::make_ddim({5, 3, 4});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 3 * 3 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
std::vector<paddle::framework::Tensor> input;
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 0, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_a.dims(), dim_a));
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_b.dims(), dim_b));
int* out_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
int cols = 2 * 3 * 4;
int idx_a = 0, idx_b = 0;
for (int j = 0; j < 5 * 3 * 4; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[j], b_ptr[idx_b],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[j], a_ptr[idx_a],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_a;
}
}
}
/**
* case 2:
* inputs:
* t_a.shape: [2, 3, 4]
* t_b.shape: [2, 4, 4]
* output:
* out.shape: [2, 7, 4]
*/
template <typename DeviceContext, typename Place>
void ConcatCase2(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({2, 4, 4});
auto dim_out = paddle::framework::make_ddim({2, 7, 4});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 4 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
std::vector<paddle::framework::Tensor> input;
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 1, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_a.dims(), dim_a));
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_b.dims(), dim_b));
int* out_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
int cols = 3 * 4;
int idx_a = 0, idx_b = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 28; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(
out_ptr[i * 28 + j], b_ptr[idx_b],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_b;
} else {
PADDLE_ENFORCE_EQ(
out_ptr[i * 28 + j], a_ptr[idx_a],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_a;
}
}
}
}
/**
* case 3:
* inputs:
* t_a.shape: [2, 3, 5]
* t_b.shape: [2, 3, 4]
* output:
* out.shape: [2, 3, 9]
*/
template <typename DeviceContext, typename Place>
void ConcatCase3(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({2, 3, 5});
auto dim_out = paddle::framework::make_ddim({2, 3, 9});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 3 * 5; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
std::vector<paddle::framework::Tensor> input;
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 2, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_a.dims(), dim_a));
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_b.dims(), dim_b));
int* out_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
// check the data
int cols = 4;
int idx_a = 0, idx_b = 0;
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 9; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(
out_ptr[i * 9 + j], b_ptr[idx_b],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_b;
} else {
PADDLE_ENFORCE_EQ(
out_ptr[i * 9 + j], a_ptr[idx_a],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_a;
}
}
}
}
/**
* case 4:
* inputs:
* axis = 1
* t_a.shape: [2, 3, 4]
* t_b.shape: [2, 3, 4]
* output:
* out.shape: [2, 6, 4]
*/
template <typename DeviceContext, typename Place>
void ConcatCase4(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({2, 3, 4});
auto dim_out = paddle::framework::make_ddim({2, 6, 4});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
std::vector<paddle::framework::Tensor> input;
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 1, &out);
context->Wait();
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_a.dims(), dim_a));
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b,
paddle::platform::errors::InvalidArgument(
"The dims of Input tensor should be the same as the "
"declared dims. Tensor dims: [%s], declared dims: [%s]",
input_b.dims(), dim_b));
int* out_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
// check the data
int cols = 12;
int idx_a = 0, idx_b = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 24; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(
out_ptr[i * 24 + j], b_ptr[idx_b],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_b;
} else {
PADDLE_ENFORCE_EQ(
out_ptr[i * 24 + j], a_ptr[idx_a],
paddle::platform::errors::InvalidArgument(
"Concat test failed, the result should be equal."));
++idx_a;
}
}
}
}
template <typename DeviceContext, typename Place>
void TestConcatMain() {
DeviceContext* context = new DeviceContext(Place());
ConcatCase1<DeviceContext, Place>(context);
ConcatCase2<DeviceContext, Place>(context);
ConcatCase3<DeviceContext, Place>(context);
ConcatCase4<DeviceContext, Place>(context);
}
TEST(math, concat) {
TestConcatMain<paddle::platform::CPUDeviceContext,
paddle::platform::CPUPlace>();
#ifdef PADDLE_WITH_CUDA
TestConcatMain<paddle::platform::CUDADeviceContext,
paddle::platform::CUDAPlace>();
#endif
}