You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/incubate/fleet/base/role_maker.py

519 lines
16 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
__all__ = [
'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker'
]
import os
class Role:
WORKER = 1
SERVER = 2
class RoleMakerBase(object):
"""
RoleMakerBase is a base class for assigning a role to current process
in distributed training.
A paddle developer can implement RoleMakerBase to design a role maker
for worker or pserver assignment.
"""
def __init__(self):
self._worker_endpoints = []
self._server_endpoints = []
self._role_is_generated = False
self._role = None
self._current_id = -1
def is_worker(self):
"""
return is_worker() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def is_server(self):
"""
return is_server() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def is_first_worker(self):
"""
Check whether the node is the first instance of worker.
Returns:
bool: True if this is the first node of worker,
False if not.
"""
raise NotImplementedError("Please implement this method in child class")
def worker_num(self):
"""
Get current total worker number.
Returns:
int: worker number
"""
raise NotImplementedError("Please implement this method in child class")
def worker_index(self):
"""
Get current worker id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def server_index(self):
"""
Get current server id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def get_trainer_endpoints(self):
"""
return trainer endpoints
"""
return self._worker_endpoints
def get_pserver_endpoints(self):
"""
return pserver endpoints
"""
return self._server_endpoints
def to_string(self):
return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
self._role, self._current_id, self._worker_endpoints,
self._server_endpoints)
class MPIRoleMaker(RoleMakerBase):
"""
MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
mpi4py will be used if a developer inherits MPIRoleMaker
"""
def __init__(self):
super(MPIRoleMaker, self).__init__()
from mpi4py import MPI
self.MPI = MPI
self._comm = MPI.COMM_WORLD
self._node_type_comm = None
self._ips = None
self._ip = None
def _get_rank(self):
"""
return rank
"""
self._rank = self._comm.Get_rank()
return self._rank
def _get_size(self):
"""
return size
"""
self._size = self._comm.Get_size()
return self._size
def _all_gather(self, obj):
"""
all_gather(obj) will call MPI's allgather function
"""
self._barrier_all()
return self._comm.allgather(obj)
def _worker_gather(self, obj):
"""
worker_gather(obj) will call MPI's allgather function
"""
if self.is_worker():
self._node_type_comm.barrier()
return self._node_type_comm.allgather(obj)
return None
def _barrier_all(self):
"""
barrier_all() will call MPI's barrier_all function
"""
self._comm.barrier()
def _finalize(self):
"""
finalize the current MPI instance.
"""
self.MPI.Finalize()
def _get_ips(self):
"""
collect current distributed job's ip list
"""
if not self._ips:
self._ips = self._comm.allgather(self.get_local_ip())
return self._ips
def get_local_ip(self):
"""
return get local ip
"""
import socket
self._ip = socket.gethostbyname(socket.gethostname())
return self._ip
def generate_role(self):
"""
generate_role() should be called to identify current process's role
"""
raise NotImplementedError("Please implement this method in child class")
class MPISymetricRoleMaker(MPIRoleMaker):
"""
MPISymetricRoleMaker is designed for worker and server assignment
under MPI. Typically, a worker and a server node will be appointed
on each physical node. This role maker can be only used under MPI.
"""
def __init__(self):
super(MPISymetricRoleMaker, self).__init__()
self._node_type = None
self._proc_per_node = 2
self._pserver_rand_port = 0
def _check_role_generation(self):
if not self._role_is_generated:
raise NameError("generate_role() should be called first")
return True
def is_first_worker(self):
"""
return whether current process is the first worker assigned by role maker
"""
if self._check_role_generation():
return self.is_worker() and 0 == self.worker_index()
return False
def get_pserver_endpoints(self):
if self._pserver_rand_port <= 0:
import random
random.seed(self._server_num())
# port will be randomly generated from 60001 to 63999
# random seed is server num so that all nodes will get
# the same port
self._pserver_rand_port = random.randint(60001, 64000)
endpoints = [
x + ":" + str(self._pserver_rand_port)
for x in self._server_endpoints
]
return endpoints
def worker_num(self):
return self._worker_num()
def is_worker(self):
"""
return whether current process is worker assigned by role maker
"""
if self._check_role_generation():
return self._node_type == 1
return False
def is_server(self):
"""
return whether current process is server assigned by role maker
"""
if self._check_role_generation():
return self._node_type == 0
return False
def _worker_num(self):
"""
return the current number of worker
"""
if self._check_role_generation():
if self.is_worker():
return self._get_size() / self._proc_per_node
return 0
def _server_num(self):
"""
return the current number of server
"""
if self._check_role_generation():
return self._get_size() / self._proc_per_node
else:
self.generate_role()
return self._get_size() / self._proc_per_node
def worker_index(self):
"""
return the index of worker
"""
if self._check_role_generation():
return self._rank / self._proc_per_node
else:
self.generate_role()
return self._get_size() / 2
def server_index(self):
"""
return the index of server
"""
if self._check_role_generation():
return self._rank / self._proc_per_node
else:
self.generate_role()
return self._get_size() / self._proc_per_node
def _barrier_worker(self):
"""
barrier all workers in current distributed job
"""
if self._check_role_generation():
if self.is_worker():
self._node_type_comm.barrier()
else:
raise Exception("You should check role generation first")
def _barrier_server(self):
"""
barrier all servers in current distributed job
"""
if self._check_role_generation():
if self.is_server():
self._node_type_comm.barrier()
else:
raise Exception("You should check role generation first")
def generate_role(self):
"""
generate currently process's role
"""
if not self._role_is_generated:
# TODO(guru4elephant): only allow to be called once
self._worker_endpoints = self._get_ips()[1::2]
self._server_endpoints = self._get_ips()[::2]
if 0 == self._get_rank() % self._proc_per_node % 2:
self._node_type = 0
else:
self._node_type = 1
self._node_type_comm = self._comm.Split(self._node_type)
self._role_is_generated = True
else:
raise Exception("You should check role generation first")
class PaddleCloudRoleMaker(RoleMakerBase):
def __init__(self, is_collective=False):
super(PaddleCloudRoleMaker, self).__init__()
self._role_is_generated = False
self._is_collective = is_collective
def generate_role(self):
if not self._role_is_generated:
if not self._is_collective:
self.port = os.getenv("PADDLE_PORT",
"6174") # port of current server
self.pserver_ips = os.getenv("PADDLE_PSERVERS",
"") # ip of server
if "," in self.port:
ports = self.port.split(",")
else:
ports = [self.port for i in self.pserver_ips.split(",")]
eplist = []
# note that, we usually assign the same port to different ips
# if we run parameter server training in local mode
# port should be different in environment variables
for i, ip in enumerate(self.pserver_ips.split(",")):
eplist.append(':'.join([ip, ports[i]]))
self.endpoints = ",".join(eplist)
self._trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
# ip of current node, either a worker or a pserver
current_ip = os.getenv("POD_IP", "")
if current_ip == "":
self._current_endpoint = os.getenv("CURRENT_ENDPOINT")
else:
self._current_endpoint = current_ip + ports[0]
self.role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
# for trainer, only POD_IP and current trainer id is needed
# we usually do not need to know other trainer ips
self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
self.eplist = eplist
self.endpoints = self.endpoints.split(",")
self._server_endpoints = self.endpoints
self._worker_endpoints = self.endpoints
if self.role.upper() == "PSERVER":
# current endpoint index among all pservers
self._current_id = self.endpoints.index(
self._current_endpoint)
self._role = Role.SERVER
else:
self._current_id = self.trainer_id
self._role = Role.WORKER
else:
self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
"TRAINER")
assert (self._training_role == "TRAINER")
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
self._worker_endpoints = self._worker_endpoints.split(",")
self._trainers_num = len(self._worker_endpoints)
self._role_is_generated = True
def get_pserver_endpoints(self):
if not self._role_is_generated:
self.generate_role()
return self._server_endpoints
def is_worker(self):
if not self._role_is_generated:
self.generate_role()
return self._role == Role.WORKER
def is_server(self):
if not self._role_is_generated:
self.generate_role()
return self._role == Role.SERVER
def is_first_worker(self):
if not self._role_is_generated:
self.generate_role()
return self._role == Role.WORKER and self._current_id == 0
def worker_index(self):
if not self._role_is_generated:
self.generate_role()
return self._current_id
def server_index(self):
if not self._role_is_generated:
self.generate_role()
return self._current_id
def worker_num(self):
if not self._role_is_generated:
self.generate_role()
return self._trainers_num
class UserDefinedRoleMaker(RoleMakerBase):
def __init__(self,
current_id=0,
role=Role.WORKER,
worker_num=0,
server_endpoints=None):
"""
UserDefinedRoleMaker is designed for worker and server assignment
under manual. Typically, a worker and a server node will be appointed
on each physical node, It can be assign by user.
"""
super(UserDefinedRoleMaker, self).__init__()
if not isinstance(current_id, int):
raise TypeError("current_id must be as int")
else:
if current_id < 0:
raise ValueError("current_id must be gather or equal 0")
self._current_id = current_id
if role != Role.WORKER and role != Role.SERVER:
raise TypeError("role must be as Role")
else:
self._role = role
if not isinstance(worker_num, int):
raise TypeError("worker_num must be as int")
else:
if worker_num < 0:
raise ValueError("worker_num must be gather or equal 0")
self._worker_num = worker_num
if not isinstance(server_endpoints, list):
raise TypeError("server_endpoints must be as string list")
else:
self._server_endpoints = server_endpoints
def generate_role(self):
self._role_is_generated = True
def is_worker(self):
return self._role == Role.WORKER
def is_server(self):
return self._role == Role.SERVER
def is_first_worker(self):
return self._role == Role.WORKER and self._current_id == 0
def worker_index(self):
return self._current_id
def server_index(self):
return self._current_id
def worker_num(self):
return self._worker_num
class UserDefinedCollectiveRoleMaker(RoleMakerBase):
def __init__(self, current_id=0, worker_endpoints=None):
"""
UserDefinedCollectiveRoleMaker is designed for worker assignment
under manual for collective mode.
"""
super(UserDefinedCollectiveRoleMaker, self).__init__()
if not isinstance(current_id, int):
raise TypeError("current_id must be as int")
else:
if current_id < 0:
raise ValueError("current_id must be greater or equal 0")
self._current_id = current_id
if not isinstance(worker_endpoints, list):
raise TypeError("worker_endpoints must be as string list")
else:
self._worker_endpoints = worker_endpoints
self._worker_num = len(self._worker_endpoints)
def generate_role(self):
self._role_is_generated = True
def is_worker(self):
return True
def is_first_worker(self):
return self._current_id == 0
def worker_index(self):
return self._current_id
def worker_num(self):
return self._worker_num