You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/tests/test_weight_decay_extend.py

189 lines
6.5 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import six
import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid as fluid
import contextlib
paddle.enable_static()
SEED = 2020
def fake_imdb_reader(word_dict_size,
sample_num,
lower_seq_len=100,
upper_seq_len=200,
class_dim=2):
def __reader__():
for _ in six.moves.range(sample_num):
length = np.random.random_integers(
low=lower_seq_len, high=upper_seq_len, size=[1])[0]
ids = np.random.random_integers(
low=0, high=word_dict_size - 1, size=[length]).astype('int64')
label = np.random.random_integers(
low=0, high=class_dim - 1, size=[1]).astype('int64')[0]
yield ids, label
return __reader__
def get_places():
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
return places
@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
scope = fluid.core.Scope()
with fluid.unique_name.guard():
with fluid.scope_guard(scope):
with fluid.program_guard(main_prog, startup_prog):
yield
def bow_net(data,
label,
dict_dim,
is_sparse=False,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
fluid/PaddleNLP/text_classification/nets.py
"""
emb = fluid.layers.embedding(
input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bow_tanh = fluid.layers.tanh(bow)
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
class TestWeightDecay(unittest.TestCase):
def setUp(self):
# set seed
np.random.seed(SEED)
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
# configs
self.word_dict_len = 5147
batch_size = 2
reader = fake_imdb_reader(self.word_dict_len, batch_size * 100)
reader = paddle.batch(reader, batch_size=batch_size)()
self.train_data = [next(reader) for _ in range(3)]
self.learning_rate = .5
def run_program(self, place, feed_list):
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
exe.run(fluid.default_startup_program())
main_prog = fluid.default_main_program()
param_list = [var.name for var in main_prog.block(0).all_parameters()]
param_sum = []
for data in self.train_data:
out = exe.run(main_prog,
feed=feeder.feed(data),
fetch_list=param_list)
p_sum = 0
for v in out:
p_sum += np.sum(np.abs(v))
param_sum.append(p_sum)
return param_sum
def check_weight_decay(self, place, model):
main_prog = fluid.framework.Program()
startup_prog = fluid.framework.Program()
with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
avg_cost = model(data, label, self.word_dict_len)
AdamW = fluid.contrib.extend_with_decoupled_weight_decay(
fluid.optimizer.Adam)
optimizer = AdamW(
learning_rate=self.learning_rate,
weight_decay=self.learning_rate)
optimizer.minimize(avg_cost)
param_sum = self.run_program(place, [data, label])
return param_sum
def check_weight_decay2(self, place, model):
main_prog = fluid.framework.Program()
startup_prog = fluid.framework.Program()
with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
avg_cost = model(data, label, self.word_dict_len)
optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)
params_grads = optimizer.backward(avg_cost)
param_list = [(var, var * self.learning_rate)
for var in main_prog.block(0).all_parameters()]
for params in param_list:
updated_p = fluid.layers.elementwise_sub(
x=params[0], y=params[1])
fluid.layers.assign(input=updated_p, output=params[0])
optimizer.apply_optimize(avg_cost, startup_prog, params_grads)
param_sum = self.run_program(place, [data, label])
return param_sum
def test_weight_decay(self):
for place in get_places():
model = partial(bow_net, is_sparse=False)
param_sum1 = self.check_weight_decay(place, model)
param_sum2 = self.check_weight_decay2(place, model)
for i in range(len(param_sum1)):
self.assertTrue(
np.allclose(param_sum1[i], param_sum2[i]),
"Current place: {}, i: {}, sum1: {}, sum2: {}".format(
place, i, param_sum1[i][~np.isclose(param_sum1[
i], param_sum2[i])], param_sum2[i][~np.isclose(
param_sum1[i], param_sum2[i])]))
if __name__ == '__main__':
unittest.main()