You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/test_LayerGrad.cpp

1573 lines
49 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/trainer/Trainer.h"
#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_double(checkgrad_eps);
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(prev_batch_state);
TEST(Operator, dot_mul) {
TestConfig config;
config.layerConfig.set_size(10);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
operatorConf.set_type("dot_mul");
operatorConf.set_dotmul_scale(-1);
testOperatorGrad(config, operatorConf, 100, false, false);
}
TEST(Projection, context) {
for (auto contextStart : {-5, -3, -1, 0, 3}) {
for (auto contextLength : {1, 2, 5, 7}) {
for (auto batchSize : {1, 2, 5, 20, 50}) {
for (auto trainablePadding : {false, true}) {
LOG(INFO) << " contextStart=" << contextStart
<< " contextLength=" << contextLength
<< " batchSize=" << batchSize
<< " trainablePadding=" << trainablePadding;
ProjectionConfig conf;
conf.set_type("context");
conf.set_input_size(10);
conf.set_context_start(contextStart);
conf.set_context_length(contextLength);
conf.set_trainable_padding(trainablePadding);
conf.set_output_size(conf.context_length() * conf.input_size());
int pad =
std::max(0, -conf.context_start()) +
std::max(0, conf.context_start() + conf.context_length() - 1);
for (auto useGpu : {false, true}) {
testProjectionGrad(
conf,
INPUT_SEQUENCE_DATA,
trainablePadding ? conf.input_size() * pad : 0,
batchSize,
useGpu,
contextStart + contextLength <= 1); // = testState
}
}
}
}
}
}
TEST(Projection, trans_fc) {
ProjectionConfig conf;
conf.set_type("trans_fc");
conf.set_input_size(50);
conf.set_output_size(20);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 1000,
/* batchSize */ 100,
useGpu);
}
}
TEST(Projection, fc) {
ProjectionConfig conf;
conf.set_type("fc");
conf.set_input_size(10);
conf.set_output_size(20);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 200,
/* batchSize */ 100,
useGpu);
}
}
TEST(Projection, dot_mul) {
ProjectionConfig conf;
conf.set_type("dot_mul");
conf.set_input_size(20);
conf.set_output_size(20);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 20,
/* batchSize */ 100,
useGpu);
}
}
TEST(Projection, table) {
ProjectionConfig conf;
conf.set_type("table");
conf.set_input_size(10);
conf.set_output_size(20);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_LABEL,
/* parameterSize */ 200,
/* batchSize */ 100,
useGpu);
}
}
TEST(Projection, identity) {
ProjectionConfig conf;
conf.set_type("identity");
conf.set_input_size(10);
conf.set_output_size(10);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 0,
/* batchSize */ 100,
useGpu);
}
}
TEST(Projection, scaling) {
ProjectionConfig conf;
conf.set_type("scaling");
conf.set_input_size(10);
conf.set_output_size(10);
for (auto useGpu : {false}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 1,
/* batchSize */ 100,
useGpu);
}
}
void testProjectionConv(size_t groups) {
const int NUM_FILTERS = 18;
const int FILTER_SIZE = 2;
const int FILTER_SIZE_Y = 3;
const int CHANNELS = 3;
const int IMAGE_SIZE = 16;
ProjectionConfig conf;
conf.set_type("conv");
conf.set_num_filters(NUM_FILTERS);
ConvConfig* conv = conf.mutable_conv_conf();
conv->set_filter_size(FILTER_SIZE);
conv->set_filter_size_y(FILTER_SIZE_Y);
conv->set_channels(CHANNELS);
conv->set_padding(0);
conv->set_padding_y(1);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_groups(groups);
conv->set_filter_channels(conv->channels() / conv->groups());
conv->set_img_size(IMAGE_SIZE);
int output_x = outputSize(conv->img_size(),
conv->filter_size(),
conv->padding(),
conv->stride(),
/* caffeMode */ true);
int output_y = outputSize(conv->img_size(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
/* caffeMode */ true);
conv->set_output_x(output_x);
conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS);
conf.set_output_size(output_x * output_y * NUM_FILTERS);
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE *
FILTER_SIZE_Y / groups,
/* batchSize */ 100,
true,
false,
NUM_FILTERS,
true);
}
#ifndef PADDLE_ONLY_CPU
TEST(Projection, conv) {
testProjectionConv(1);
testProjectionConv(3);
}
#endif
TEST(Layer, BilinearInterpLayer) {
TestConfig config;
config.layerConfig.set_type("bilinear_interp");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
BilinearInterpConfig* bilinear = input->mutable_bilinear_interp_conf();
ImageConfig* image = bilinear->mutable_image_conf();
image->set_img_size(32);
image->set_img_size_y(32);
image->set_channels(4);
for (auto useGpu : {false, true}) {
for (auto outSize : {32, 64}) {
bilinear->set_out_size_x(outSize);
bilinear->set_out_size_y(outSize);
testLayerGrad(config, "bilinear_interp", 10, false, useGpu);
}
}
}
TEST(Layer, concat) {
TestConfig config;
config.biasSize = 0;
config.layerConfig.set_type("concat");
config.layerConfig.set_size(15);
config.layerConfig.set_active_type("sigmoid");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
config.layerConfig.add_inputs();
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "concat", 100, false, useGpu);
}
}
TEST(Layer, AddtoLayer) {
TestConfig config;
config.biasSize = 0;
config.layerConfig.set_type("addto");
config.layerConfig.set_size(10);
config.layerConfig.set_active_type("sigmoid");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.layerConfig.add_inputs();
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "addto", 100, false, useGpu);
}
}
TEST(Layer, CRFLayer) {
TestConfig config;
config.layerConfig.set_type("crf");
config.layerConfig.set_size(10);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 120});
config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
// Not support GPU now
testLayerGrad(config,
"crf",
100,
/* trans */ false,
/* useGpu */ false,
false /*useWeight*/,
0.03 /*epsilon*/);
}
TEST(Layer, CTCLayer) {
TestConfig config;
config.layerConfig.set_type("ctc");
config.layerConfig.set_norm_by_times(false);
config.layerConfig.set_size(10);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "ctc", 100, /* trans */ false, /* useGpu */ useGpu);
}
}
TEST(Layer, cosSimLayer) {
TestConfig config;
config.layerConfig.set_type("cos");
config.layerConfig.set_size(1);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 50, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "cos", 100, false, useGpu);
}
}
TEST(Layer, CosSimVecMatLayer) {
TestConfig config;
config.layerConfig.set_type("cos_vm");
config.layerConfig.set_size(5); // output size
config.layerConfig.set_cos_scale(2.0);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 0});
config.layerConfig.add_inputs();
config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "cos_vm", 100, false, useGpu);
}
}
void testConvLayer(const string& type, bool trans, bool useGpu) {
TestConfig config;
config.biasSize = 16;
config.layerConfig.set_type(type);
config.layerConfig.set_num_filters(16);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 384, 288});
LayerInputConfig* input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_filter_size(2);
conv->set_filter_size_y(3);
conv->set_channels(3);
conv->set_padding(0);
conv->set_padding_y(1);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
conv->set_img_size(16);
conv->set_img_size_y(8);
conv->set_output_x(outputSize(conv->img_size(),
conv->filter_size(),
conv->padding(),
conv->stride(),
/* caffeMode */ true));
conv->set_output_y(outputSize(conv->img_size_y(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
/* caffeMode */ true));
config.layerConfig.set_size(conv->output_x() * conv->output_y() *
config.layerConfig.num_filters());
testLayerGrad(config, "conv", 100, trans, useGpu);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad(config, "conv", 2, trans, useGpu, true, 0.02);
}
TEST(Layer, convLayer) {
testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU
testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true);
testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true);
#endif
}
void testConvTransLayer(const string& type, bool trans, bool useGpu) {
TestConfig config;
config.biasSize = 3;
config.layerConfig.set_type(type);
config.layerConfig.set_num_filters(3);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 288});
LayerInputConfig* input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_filter_size(2);
conv->set_filter_size_y(3);
conv->set_channels(16);
conv->set_padding(0);
conv->set_padding_y(1);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_groups(1);
conv->set_filter_channels(3 / conv->groups());
conv->set_img_size(16);
conv->set_output_x(outputSize(conv->img_size(),
conv->filter_size(),
conv->padding(),
conv->stride(),
/* caffeMode */ true));
config.layerConfig.set_size(conv->img_size() * conv->img_size() *
config.layerConfig.num_filters());
testLayerGrad(config, "convTrans", 100, trans, useGpu);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad(config, "convTrans", 2, trans, useGpu, true, 0.02);
}
TEST(Layer, convTransLayer) {
for (auto useGpu : {false, true}) {
testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu);
}
}
TEST(Layer, blockExpandLayer) {
TestConfig config;
config.biasSize = 0;
config.layerConfig.set_type("blockexpand");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 6144, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
BlockExpandConfig* blockExpand = input->mutable_block_expand_conf();
blockExpand->set_img_size_x(64);
blockExpand->set_img_size_y(32);
blockExpand->set_channels(3);
blockExpand->set_padding_x(0);
blockExpand->set_padding_y(0);
blockExpand->set_block_x(4);
blockExpand->set_block_y(32);
blockExpand->set_stride_x(2);
blockExpand->set_stride_y(2);
blockExpand->set_output_x(outputSize(blockExpand->img_size_x(),
blockExpand->block_x(),
blockExpand->padding_x(),
blockExpand->stride_x(),
/* caffeMode */ false));
blockExpand->set_output_y(outputSize(blockExpand->img_size_y(),
blockExpand->block_y(),
blockExpand->padding_y(),
blockExpand->stride_y(),
/* caffeMode */ false));
config.layerConfig.set_size(blockExpand->block_x() * blockExpand->block_y() *
blockExpand->channels());
for (auto useGpu : {false, true}) {
testLayerGrad(config, "blockexpand", 100, false, useGpu);
}
}
TEST(Layer, maxoutLayer) {
TestConfig config;
config.biasSize = 0;
config.layerConfig.set_type("maxout");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
MaxOutConfig* maxout = input->mutable_maxout_conf();
ImageConfig* image = maxout->mutable_image_conf();
image->set_img_size(32);
image->set_img_size_y(32);
image->set_channels(4);
maxout->set_groups(2);
for (auto useGpu : {false, true}) {
testLayerGrad(config, "maxout", 10, false, useGpu);
}
}
void testFcLayer(string format, size_t nnz) {
TestConfig config;
config.biasSize = 4096;
config.layerConfig.set_type("fc");
config.layerConfig.set_size(4096);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_drop_rate(0.1);
config.inputDefs.push_back(
{INPUT_DATA, "layer_0", 8192, nnz, ParaSparse(format)});
config.layerConfig.add_inputs();
LOG(INFO) << config.inputDefs[0].sparse.sparse << " "
<< config.inputDefs[0].sparse.format;
for (auto useGpu : {false, true}) {
testLayerGrad(config,
"fc",
100,
/* trans */ false,
useGpu,
/* weight */ true);
}
}
TEST(Layer, fcLayer) {
testFcLayer("", 4096 * 4096 * 2);
testFcLayer("csc", 4096 * 40);
testFcLayer("csr", 4096 * 40);
}
TEST(Layer, SelectiveFullyConnectedLayer) {
TestConfig config;
size_t nin = 16;
size_t nout = 256;
config.layerConfig.set_type("selective_fc");
config.layerConfig.set_size(nout);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_has_selected_colums(true);
config.layerConfig.set_selective_fc_pass_generation(false);
config.biasSize = nout;
config.inputDefs.push_back({INPUT_DATA, "input0", nin, nin * nout});
config.layerConfig.add_inputs();
config.inputDefs.push_back(
{INPUT_SPARSE_NON_VALUE_DATA, "index", nout, 0, ParaSparse("csr", true)});
config.layerConfig.add_inputs();
testLayerGrad(config,
"selective_fc",
100,
/* trans= */ false,
/* useGup= */ false,
false);
#ifndef PADDLE_ONLY_CPU
testLayerGrad(config,
"selective_fc",
100,
/* trans= */ false,
/* useGup= */ true,
false);
#endif
}
TEST(Layer, DataNormLayer) {
TestConfig config;
config.layerConfig.set_type("data_norm");
config.layerConfig.set_size(20);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 100});
config.inputDefs.back().isStatic = true;
config.layerConfig.add_inputs();
for (auto strategy : {"z-score", "min-max", "decimal-scaling"}) {
config.layerConfig.set_data_norm_strategy(strategy);
// The parameters are static, so not support GPU now
testLayerGrad(config,
"data_norm",
200,
/* trans */ false,
/* useGpu */ false);
}
}
TEST(Layer, hsigmoidLayer) {
TestConfig config;
config.layerConfig.set_type("hsigmoid");
config.layerConfig.set_num_classes(5);
config.layerConfig.set_size(1);
config.biasSize = config.layerConfig.num_classes() - 1;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 200});
config.inputDefs.push_back({INPUT_LABEL, "layer_1", 5, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
// Not support GPU now
testLayerGrad(config, "hsigmoid", 100, /* trans */ false, /* useGpu */ false);
}
TEST(Layer, multi_cross) {
TestConfig config;
config.layerConfig.set_type("multi-class-cross-entropy");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(
config, "multi-class-cross-entropy", 100, /* trans */ false, useGpu);
}
}
TEST(Layer, multi_binary_label_sparse_mat) {
TestConfig config;
config.layerConfig.set_type("multi_binary_label_cross_entropy");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config,
"multi_binary_label_cross_entropy",
100,
/* trans */ false,
useGpu);
}
}
TEST(layer, multi_binary_label_id) {
TestConfig config;
config.layerConfig.set_type("multi_binary_label_cross_entropy");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config,
"multi_binary_label_cross_entropy",
100,
/* trans */ false,
useGpu);
}
}
TEST(Layer, multi_cross_with_selfnorm) {
TestConfig config;
config.layerConfig.set_type("multi_class_cross_entropy_with_selfnorm");
config.layerConfig.set_softmax_selfnorm_alpha(0.1);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
// Not support GPU now
testLayerGrad(config,
"multi_class_cross_entropy_with_selfnorm",
100,
/* trans */ false,
/* useGpu */ false);
}
TEST(Layer, multi_cross_soft) {
TestConfig config;
config.layerConfig.set_type("soft_binary_class_cross_entropy");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config,
"soft_binary_class_cross_entropy",
100,
/* trans */ false,
useGpu);
}
}
TEST(Layer, square_error) {
TestConfig config;
config.layerConfig.set_type("square_error");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
}
}
TEST(Layer, sparse_square_error) {
TestConfig config;
config.layerConfig.set_type("square_error");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
// "GpuSparseMatrix" as label is not supported
testLayerGrad(config,
"square_error",
100,
/* trans */ false,
/* useGpu */ false);
}
TEST(Layer, sparse_float_square_error) {
TestConfig config;
config.layerConfig.set_type("square_error");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
config.inputDefs.push_back({INPUT_SPARSE_FLOAT_VALUE_DATA, "layer_1", 50, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
// "GpuSparseMatrix" as label is not supported
testLayerGrad(config,
"square_error",
100,
/* trans */ false,
/* useGpu */ false);
}
TEST(Layer, square_error_weighted) {
TestConfig config;
config.layerConfig.set_type("square_error");
config.biasSize = 0;
config.testAccumulate = false;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
}
}
TEST(Layer, huber_two_class) {
TestConfig config;
config.layerConfig.set_type("huber");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.inputDefs.push_back({INPUT_LABEL, "layer_1", 2, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "huber", 100, /* trans */ false, useGpu);
}
}
void testExpandLayer(string trans_type, bool hasSubseq) {
TestConfig config;
config.layerConfig.set_type("expand");
config.inputDefs.push_back(
{trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA,
"layer_0",
10,
0});
config.inputDefs.push_back(
{hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
"layer_1",
10,
0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.set_trans_type(trans_type);
LOG(INFO) << " trans_type=" << trans_type << " hasSubseq=" << hasSubseq;
for (auto useGpu : {false, true}) {
testLayerGrad(config, "expand", 30, false, useGpu);
}
}
TEST(Layer, ExpandLayer) {
testExpandLayer("non-seq", false); // non-seq expand to seq
testExpandLayer("non-seq", true); // non-seq expand to hasSubseq
testExpandLayer("seq", true); // seq expand to hasSubseq
}
void testDegradeLayer(bool hasSubseq, string layer_type, string trans_type) {
TestConfig config;
config.layerConfig.set_type(layer_type);
config.layerConfig.set_size(10);
config.biasSize = 0;
config.inputDefs.push_back(
{hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
"layer_0",
10,
0});
config.layerConfig.add_inputs();
config.layerConfig.set_trans_type(trans_type);
auto testDegradeLayerGrad = [](TestConfig& config, string layer_type) {
for (auto useGpu : {false, true}) {
testLayerGrad(config, layer_type, 100, false, useGpu);
}
};
if (layer_type == "average") {
for (auto strategy : {"average", "sum", "squarerootn"}) {
LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
<< " average_strategy=" << strategy;
config.layerConfig.set_average_strategy(strategy);
testDegradeLayerGrad(config, layer_type);
}
} else {
LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type;
testDegradeLayerGrad(config, layer_type);
}
}
TEST(Layer, MaxLayer) {
testDegradeLayer(false, "max", "non-seq"); // seq max to non-seq
testDegradeLayer(true, "max", "non-seq"); // hasSubseq max to non-seq
testDegradeLayer(true, "max", "seq"); // hasSubseq max to seq
}
TEST(Layer, SequenceLastInstanceLayer) {
testDegradeLayer(false,
"seqlastins",
"non-seq"); // seq seqlastins to non-seq
testDegradeLayer(true,
"seqlastins",
"non-seq"); // hasSubseq seqlastins to non-seq
testDegradeLayer(true, "seqlastins", "seq"); // hasSubseq seqlastins to seq
}
TEST(Layer, AverageLayer) {
testDegradeLayer(false, "average", "non-seq"); // seq average to non-seq
testDegradeLayer(true, "average", "non-seq"); // hasSubseq average to non-seq
testDegradeLayer(true, "average", "seq"); // hasSubseq average to seq
}
TEST(Layer, SequenceConcatLayer) {
TestConfig config;
config.layerConfig.set_type("seqconcat");
config.layerConfig.set_size(10);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
config.layerConfig.add_inputs();
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "seqconcat", 100, false, useGpu);
}
}
TEST(Layer, SequenceReshapeLayer) {
TestConfig config;
config.layerConfig.set_type("seqreshape");
config.layerConfig.set_size(10);
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 100, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "seqreshape", 100, false, useGpu);
}
}
TEST(Layer, ConvShiftLayer) {
TestConfig config;
config.layerConfig.set_type("conv_shift");
config.layerConfig.set_size(10);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 3, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
// Not support GPU now
testLayerGrad(config, "conv_shift", 100, false, false);
}
TEST(Layer, PowerLayer) {
TestConfig config;
config.layerConfig.set_type("power");
config.layerConfig.set_size(10);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "power", 100, false, useGpu);
}
}
TEST(Layer, ConvexCombinationLayer) {
TestConfig config;
config.layerConfig.set_type("convex_comb");
config.layerConfig.set_size(20);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "convex_comb", 100, false, useGpu);
}
}
TEST(Layer, InterpolationLayer) {
TestConfig config;
config.layerConfig.set_type("interpolation");
config.layerConfig.set_size(10);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_2", 10, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "interpolation", 100, false, useGpu);
}
}
TEST(Layer, OuterProdLayer) {
TestConfig config;
config.layerConfig.set_type("out_prod");
config.layerConfig.set_size(100);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.layerConfig.add_inputs();
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "out_prod", 100, false, useGpu);
}
}
TEST(Layer, SlopeInterceptLayer) {
TestConfig config;
config.layerConfig.set_type("slope_intercept");
config.layerConfig.set_size(10);
config.layerConfig.set_slope(1.0);
config.layerConfig.set_intercept(0.1);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "slope_intercept", 100, false, useGpu);
}
}
TEST(Layer, ScalingLayer) {
TestConfig config;
config.layerConfig.set_type("scaling");
config.layerConfig.set_size(10);
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.layerConfig.add_inputs();
config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "scaling", 100, false, useGpu);
}
}
void testNormLayer(const string& normType, bool trans, bool useGpu) {
TestConfig config;
config.layerConfig.set_type("norm");
config.layerConfig.set_active_type("relu");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1568, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
NormConfig* norm = input->mutable_norm_conf();
norm->set_norm_type(normType);
norm->set_channels(16);
norm->set_size(5);
norm->set_scale(0.001);
norm->set_pow(0.75);
norm->set_blocked(0);
norm->set_img_size(14);
norm->set_img_size_y(7);
norm->set_output_x(norm->img_size());
norm->set_output_y(norm->img_size_y());
if (norm->norm_type() == "cmrnorm" ||
norm->norm_type() == "cmrnorm-projection") {
norm->set_scale(norm->scale() / norm->size());
} else {
norm->set_scale(norm->scale() / (norm->size() * norm->size()));
}
config.layerConfig.set_size(norm->output_x() * norm->output_y() *
norm->channels());
config.biasSize = 0;
testLayerGrad(config, "norm", 100, trans, useGpu);
}
TEST(Layer, NormLayer) {
testNormLayer("cmrnorm-projection", /* trans= */ false, /* useGpu= */ true);
testNormLayer("cmrnorm-projection", /* trans= */ false, /* useGpu= */ false);
}
void setPoolConfig(TestConfig* config,
PoolConfig* pool,
const string& poolType) {
(*config).biasSize = 0;
(*config).layerConfig.set_type("pool");
(*config).layerConfig.set_num_filters(16);
int kw = 3, kh = 3;
int pw = 0, ph = 0;
int sw = 2, sh = 2;
pool->set_pool_type(poolType);
pool->set_channels(16);
pool->set_size_x(kw);
pool->set_size_y(kh);
pool->set_start(0);
pool->set_padding(pw);
pool->set_padding_y(ph);
pool->set_stride(sw);
pool->set_stride_y(sh);
int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
pool->set_output_x(ow);
pool->set_output_y(oh);
}
void testPoolLayer(const string& poolType, bool trans, bool useGpu) {
TestConfig config;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
PoolConfig* pool = input->mutable_pool_conf();
pool->set_img_size(14);
pool->set_img_size_y(14);
setPoolConfig(&config, pool, poolType);
config.layerConfig.set_size(pool->output_x() * pool->output_y() *
pool->channels());
testLayerGrad(config, "pool", 100, trans, useGpu);
}
#ifndef PADDLE_ONLY_CPU
void testPoolLayer2(const string& poolType, bool trans, bool useGpu) {
TestConfig config;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
PoolConfig* pool = input->mutable_pool_conf();
pool->set_size_y(4);
pool->set_stride_y(3);
pool->set_img_size(10);
pool->set_img_size_y(20);
setPoolConfig(&config, pool, poolType);
pool->set_output_y((pool->img_size_y() - pool->start() - pool->size_y()) /
((float)pool->stride_y()) +
1.5);
config.layerConfig.set_size(pool->output_x() * pool->output_y() *
pool->channels());
testLayerGrad(config, "pool", 100, trans, useGpu);
}
#endif
TEST(Layer, PoolLayer) {
testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false);
testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU
testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true);
testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true);
testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
#endif
}
void testSppLayer(const string& poolType,
const int pyramidHeight,
bool trans,
bool useGpu) {
TestConfig config;
config.layerConfig.set_type("spp");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
SppConfig* sppConfig = input->mutable_spp_conf();
sppConfig->set_pool_type(poolType);
sppConfig->set_pyramid_height(pyramidHeight);
ImageConfig* imageConfig = sppConfig->mutable_image_conf();
imageConfig->set_channels(16);
imageConfig->set_img_size(10);
imageConfig->set_img_size_y(20);
int outputSize = (std::pow(4, sppConfig->pyramid_height()) - 1) / (4 - 1);
config.layerConfig.set_size(outputSize * imageConfig->channels());
testLayerGrad(config, "spp", 100, trans, useGpu);
}
TEST(Layer, SpatialPyramidPoolLayer) {
for (auto useGpu : {false, true}) {
for (auto pyramidHeight : {1, 2, 3}) {
testSppLayer("avg-projection", pyramidHeight, false, useGpu);
testSppLayer("max-projection", pyramidHeight, false, useGpu);
}
}
}
TEST(Layer, rankCostLayer) {
TestConfig config;
config.layerConfig.set_type("rank-cost");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "rank-cost", 100, false, useGpu);
}
}
TEST(Layer, sumCostLayer) {
TestConfig config;
config.layerConfig.set_type("sum_cost");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "sum_cost", 100, false, useGpu);
}
}
TEST(Layer, weightedRankCostLayer) {
TestConfig config;
config.layerConfig.set_type("rank-cost");
config.biasSize = 0;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_3", 1, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "weighted-rank-cost", 100, false, useGpu);
}
}
TEST(Layer, TensorLayer) {
TestConfig config;
config.layerConfig.set_type("tensor");
config.layerConfig.set_size(10);
config.layerConfig.set_active_type("sigmoid");
config.biasSize = config.layerConfig.size();
config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 250});
config.inputDefs.push_back({INPUT_DATA, "layer_1", 5, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "tensor", 100, false, useGpu);
}
}
TEST(Layer, RecurrentLayer) {
TestConfig config;
config.layerConfig.set_type("recurrent");
config.layerConfig.set_size(4);
config.layerConfig.set_active_type("tanh");
config.biasSize = 4;
config.inputDefs.push_back(
{INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 4, /* paraSize= */ 16});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
for (auto reversed : {false, true}) {
config.layerConfig.set_reversed(reversed);
config.testState = !reversed;
testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu);
}
}
}
TEST(Layer, LstmLayer) {
TestConfig config;
config.layerConfig.set_type("lstmemory");
config.layerConfig.set_size(4);
config.layerConfig.set_active_type("tanh");
config.layerConfig.set_active_state_type("sigmoid");
config.layerConfig.set_active_gate_type("sigmoid");
config.biasSize = 28;
config.inputDefs.push_back(
{INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 64});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
for (auto reversed : {false, true}) {
config.layerConfig.set_reversed(reversed);
config.testState = !reversed;
testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu);
}
}
for (auto useGpu : {true}) {
config.testBatchState = true;
config.layerConfig.set_reversed(false);
testLayerGrad(config, "lstmemory", 10, /* trans= */ false, useGpu);
}
}
TEST(Layer, MDLstmLayer) {
TestConfig config;
config.layerConfig.set_type("mdlstmemory");
config.layerConfig.set_size(4);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_active_state_type("sigmoid");
config.layerConfig.set_active_gate_type("sigmoid");
config.biasSize = 4 * 9;
config.inputDefs.push_back(
{INPUT_SEQUENCE_MDIM_DATA, "layer_0", 4 * 5, 4 * 4 * 5});
config.layerConfig.add_inputs();
config.layerConfig.add_directions(true);
config.layerConfig.add_directions(true);
for (auto useGpu : {false, true}) {
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
config.layerConfig.set_directions(0, bool(i));
config.layerConfig.set_directions(1, bool(j));
testLayerGrad(config, "mdlstmemory", 100, false, useGpu);
}
}
}
}
TEST(Layer, ParameterReluLayer) {
auto testParameterReluLayer = [&](size_t inputSize, size_t channels) {
TestConfig config;
config.layerConfig.set_type("prelu");
config.inputDefs.push_back({INPUT_DATA, "layer_0", inputSize, channels});
config.layerConfig.add_inputs();
config.layerConfig.set_size(inputSize);
config.layerConfig.set_partial_sum(inputSize /
channels); // size of feature map
for (auto useGpu : {false, true}) {
testLayerGrad(config, "prelu", 100, false, useGpu);
}
};
testParameterReluLayer(192, 1);
testParameterReluLayer(192, 3);
testParameterReluLayer(192, 192);
}
TEST(Layer, ResizeLayer) {
TestConfig config;
config.biasSize = 0;
config.layerConfig.set_type("resize");
config.layerConfig.set_size(64);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 16, 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "resize", 100, false, useGpu);
}
}
TEST(Layer, NCELayer) {
TestConfig config;
size_t numClasses = 4;
config.layerConfig.set_type("nce");
config.layerConfig.set_size(1);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_num_classes(numClasses);
config.biasSize = numClasses;
config.inputDefs.push_back(
{INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 16 * numClasses});
config.inputDefs.push_back(
{INPUT_LABEL, "label", /* dim= */ numClasses, /* paraSize= */ 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto withWeight : {false, true}) {
if (withWeight) {
config.inputDefs.push_back(
{INPUT_DATA_TARGET, "weight", /* dim= */ 1, /* paraSize= */ 0});
config.layerConfig.add_inputs();
}
for (auto isIdLabel : {false, true}) {
config.inputDefs[1] = {
isIdLabel ? INPUT_LABEL : INPUT_SPARSE_NON_VALUE_DATA,
"label",
/* dim= */ numClasses,
/* paraSize= */ 0};
for (auto withDist : {false, true}) {
config.layerConfig.clear_neg_sampling_dist();
if (withDist) {
double sum = 0;
for (size_t i = 0; i < numClasses; ++i) {
real p = rand(); // NOLINT use rand_r
config.layerConfig.add_neg_sampling_dist(p);
sum += p;
}
for (size_t i = 0; i < numClasses; ++i) {
real p = config.layerConfig.neg_sampling_dist(i) / sum;
config.layerConfig.set_neg_sampling_dist(i, p);
}
}
LOG(INFO) << "NCELayer "
<< " isIdLabel=" << isIdLabel << " withWeight=" << withWeight
<< " withDist=" << withDist;
// Not support GPU now
testLayerGrad(config,
"nce",
100,
/* trans= */ false,
/* useGpu */ false);
}
}
}
}
TEST(Layer, GatedRecurrentLayer) {
TestConfig config;
config.layerConfig.set_type("gated_recurrent");
config.layerConfig.set_size(4);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_active_gate_type("sigmoid");
config.biasSize = 12;
config.inputDefs.push_back(
{INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
for (auto reversed : {false, true}) {
config.layerConfig.set_reversed(reversed);
config.testState = !reversed;
testLayerGrad(config, "gated_recurrent", 100, /* trans= */ false, useGpu);
}
}
}
TEST(Layer, GruStepLayer) {
TestConfig config;
config.layerConfig.set_type("gru_step");
config.layerConfig.set_size(4);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_active_gate_type("sigmoid");
config.biasSize = 12;
config.inputDefs.push_back(
{INPUT_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
config.inputDefs.push_back(
{INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "gruStep", 100, /* trans= */ false, useGpu);
}
}
TEST(Layer, LstmStepLayer) {
TestConfig config;
config.layerConfig.set_type("lstm_step");
config.layerConfig.set_size(4);
config.layerConfig.set_active_type("sigmoid");
config.layerConfig.set_active_state_type("sigmoid");
config.layerConfig.set_active_gate_type("sigmoid");
config.biasSize = 12;
config.testAccumulate = false;
config.inputDefs.push_back(
{INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 0});
config.inputDefs.push_back(
{INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "lstmStep", 100, /* trans= */ false, useGpu);
}
}
void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
TestConfig config;
const int CHANNELS = 10;
const int IMG_SIZE = 16;
const int IMG_SIZE_Y = 8;
size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y;
config.layerConfig.set_type(type);
config.layerConfig.set_size(size);
config.layerConfig.set_active_type("sigmoid");
config.biasSize = CHANNELS;
config.inputDefs.push_back({INPUT_DATA,
"layer_0",
/* dim= */ size,
/* paraSize= */ CHANNELS});
config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
config.inputDefs.back().isStatic = true;
config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
config.inputDefs.back().isStatic = true;
LayerInputConfig* input = config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
ImageConfig* img_conf = input->mutable_image_conf();
img_conf->set_channels(CHANNELS);
img_conf->set_img_size(IMG_SIZE);
img_conf->set_img_size_y(IMG_SIZE_Y);
testLayerGrad(config,
"batch_norm",
64,
/* trans= */ trans,
useGpu,
/* useWeight */ true);
}
TEST(Layer, BatchNormalizationLayer) {
testBatchNormLayer("batch_norm", false, false);
#ifndef PADDLE_ONLY_CPU
testBatchNormLayer("batch_norm", false, true);
if (hl_get_cudnn_lib_version() >= int(4000)) {
testBatchNormLayer("cudnn_batch_norm", false, true);
}
#endif
}
TEST(Operator, conv) {
TestConfig config;
const int NUM_FILTERS = 16;
const int FILTER_SIZE = 2;
const int FILTER_SIZE_Y = 3;
const int CHANNELS = 3;
const int IMAGE_SIZE = 16;
const int IMAGE_SIZE_Y = 8;
OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
operatorConf.set_type("conv");
ConvConfig* conv = operatorConf.mutable_conv_conf();
operatorConf.set_num_filters(NUM_FILTERS);
conv->set_filter_size(FILTER_SIZE);
conv->set_filter_size_y(FILTER_SIZE_Y);
conv->set_channels(CHANNELS);
conv->set_padding(0);
conv->set_padding_y(1);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
conv->set_img_size(IMAGE_SIZE);
conv->set_img_size_y(IMAGE_SIZE_Y);
conv->set_output_x(outputSize(conv->img_size(),
conv->filter_size(),
conv->padding(),
conv->stride(),
/* caffeMode */ true));
conv->set_output_y(outputSize(conv->img_size_y(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
/* caffeMode */ true));
config.layerConfig.set_size(conv->output_x() * conv->output_y() *
NUM_FILTERS);
config.inputDefs.push_back(
{INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE_Y * CHANNELS, 0});
config.inputDefs.push_back(
{INPUT_DATA,
"layer_1",
FILTER_SIZE * FILTER_SIZE_Y * CHANNELS * NUM_FILTERS,
0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
testOperatorGrad(config, operatorConf, 100, /*useGpu*/ true, false);
}
TEST(Layer, FeatureMapExpandLayer) {
TestConfig config;
config.layerConfig.set_type("featmap_expand");
const int CHANNELS = 10;
const int INPUT_SIZE = 100;
config.layerConfig.set_size(INPUT_SIZE * CHANNELS);
config.layerConfig.set_num_filters(CHANNELS);
config.inputDefs.push_back({INPUT_SEQUENCE_DATA,
"layer_0",
/* dim= */ INPUT_SIZE,
/* paraSize= */ 0});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config,
"featmap_expand",
/*batch_size*/ 100,
/* trans= */ false,
useGpu,
/* useWeight */ true);
}
}
TEST(Layer, MultiplexLayer) {
TestConfig config;
const int LAYER_SIZE = 100;
config.layerConfig.set_type("multiplex");
config.layerConfig.set_size(LAYER_SIZE);
config.inputDefs.push_back({INPUT_LABEL, "layer_0", 2, 0});
config.inputDefs.push_back(
{INPUT_DATA, "layer_1", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
config.inputDefs.push_back(
{INPUT_DATA, "layer_2", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "multiplex", 512, /* trans= */ false, useGpu);
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
return RUN_ALL_TESTS();
}