You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1093 lines
29 KiB
1093 lines
29 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
from scipy.special import expit
|
|
|
|
|
|
class TestExp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "exp"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.exp(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Exp(TestExp):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSigmoid(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "sigmoid"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
|
|
out = 1 / (1 + np.exp(-x))
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.01)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Sigmoid(TestSigmoid):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestLogSigmoid(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "logsigmoid"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.log(1 / (1 + np.exp(-x)))
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.008)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16LogSigmoid(TestLogSigmoid):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestTanh(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "tanh"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.tanh(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Tanh(TestTanh):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestTanhShrink(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "tanh_shrink"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
|
|
out = x - np.tanh(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.008)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16TanhShrink(TestTanhShrink):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestHardShrink(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "hard_shrink"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
threshold = 0.5
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
out = np.copy(x)
|
|
out[(out >= -threshold) & (out <= threshold)] = 0
|
|
|
|
self.attrs = {'lambda': threshold}
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.005)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16HardShrink(TestHardShrink):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSoftShrink(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "softshrink"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
lambda_val = 0.1
|
|
x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
|
|
out = np.copy(x)
|
|
out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
|
|
out - lambda_val)
|
|
|
|
self.attrs = {'lambda': lambda_val}
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16SoftShrink(TestSoftShrink):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSqrt(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "sqrt"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.sqrt(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Sqrt(TestSqrt):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestAbs(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "abs"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
# Because we set delta = 0.005 in caculating numeric gradient,
|
|
# if x is too small, such as 0.002, x_neg will be -0.003
|
|
# x_pos will be 0.007, so the numeric gradient is unaccurate.
|
|
# we should avoid this
|
|
x[np.abs(x) < 0.005] = 0.02
|
|
out = np.abs(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Abs(TestAbs):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestCeil(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "ceil"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
out = np.ceil(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
# The same reason with TestFloor
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Ceil(TestCeil):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestFloor(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "floor"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
out = np.floor(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
# the gradient on floor, ceil, round is undefined.
|
|
# we return zero as gradient, but the numpy return nan
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Floor(TestFloor):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestCos(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "cos"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
out = np.cos(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Cos(TestCos):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSin(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "sin"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
out = np.sin(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Sin(TestSin):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestRound(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "round"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
out = np.round(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Round(TestRound):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestRelu(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "relu"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
|
|
# The same reason with TestAbs
|
|
x[np.abs(x) < 0.005] = 0.02
|
|
out = np.maximum(x, 0)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Relu(TestRelu):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestBRelu(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "brelu"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
|
|
t_min = 1.0
|
|
t_max = 4.0
|
|
# The same with TestAbs
|
|
x[np.abs(x - t_min) < 0.005] = t_min + 0.02
|
|
x[np.abs(x - t_max) < 0.005] = t_max + 0.02
|
|
t = np.copy(x)
|
|
t[t < t_min] = t_min
|
|
t[t > t_max] = t_max
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.attrs = {'t_min': t_min, 't_max': t_max}
|
|
self.outputs = {'Out': t}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.02)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16BRelu(TestBRelu):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestRelu6(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "relu6"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
|
|
threshold = 6.0
|
|
# The same with TestAbs
|
|
x[np.abs(x) < 0.005] = 0.02
|
|
x[np.abs(x - threshold) < 0.005] = threshold + 0.02
|
|
out = np.minimum(np.maximum(x, 0), threshold)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.attrs = {'threshold': threshold}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.02)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Relu6(TestRelu6):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSoftRelu(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "soft_relu"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
|
|
threshold = 2.0
|
|
# The same reason with TestAbs
|
|
x[np.abs(x - threshold) < 0.005] = threshold + 0.02
|
|
x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
|
|
t = np.copy(x)
|
|
t[t < -threshold] = -threshold
|
|
t[t > threshold] = threshold
|
|
out = np.log((np.exp(t) + 1))
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.attrs = {'threshold': threshold}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.02)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16SoftRelu(TestSoftRelu):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestELU(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elu"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
|
|
alpha = 1.
|
|
out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
|
|
# Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
|
|
# is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
|
|
self.inputs = {'X': x}
|
|
self.attrs = {'alpha': alpha}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.02)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16ELU(TestELU):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestReciprocal(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reciprocal"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
|
out = np.reciprocal(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.01)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Reciprocal(TestReciprocal):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestLog(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "log"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.log(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Log(TestLog):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSquare(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "square"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.square(x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Square(TestSquare):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestPow(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "pow"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
|
out = np.power(x, 3)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.attrs = {'factor': 3.0}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.02)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Pow(TestPow):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=5e-2)
|
|
|
|
|
|
class TestSTanh(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "stanh"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
scale_a = 2.0 / 3.0
|
|
scale_b = 1.7159
|
|
out = scale_b * np.tanh(x * scale_a)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16STanh(TestSTanh):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSoftplus(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "softplus"
|
|
self.dtype = np.float64
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.log(1 + np.exp(x))
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Softplus(TestSoftplus):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSoftsign(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "softsign"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
|
|
out = np.divide(x, 1 + np.abs(x))
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.007)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Softsign(TestSoftsign):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestThresholdedRelu(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "thresholded_relu"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
threshold = 0.25
|
|
self.relative_error = 0.005
|
|
X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
|
|
|
|
# Same reason as TestAbs
|
|
X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
|
|
out = (X > threshold) * X
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
|
|
self.attrs = {'threshold': threshold}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16ThresholdedRelu(TestThresholdedRelu):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestHardSigmoid(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "hard_sigmoid"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
self.relative_error = 0.002
|
|
|
|
X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
|
|
slope = 0.2
|
|
offset = 0.5
|
|
lower_threshold = -offset / slope
|
|
upper_threshold = (1 - offset) / slope
|
|
|
|
# Same reason as TestAbs
|
|
X[np.abs(X - lower_threshold) < self.relative_error] = \
|
|
lower_threshold + 0.2
|
|
X[np.abs(X - upper_threshold) < self.relative_error] = \
|
|
upper_threshold - 0.2
|
|
|
|
temp = X * slope + offset
|
|
out = np.maximum(0.0, np.minimum(1.0, temp))
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.002)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16HardSigmoid(TestHardSigmoid):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestSwish(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "swish"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
beta = 2.3
|
|
out = X * expit(beta * X)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
|
|
self.attrs = {'beta': beta}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.008)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
|
|
class TestFP16Swish(TestSwish):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|