You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_bipartite_match_op.py

139 lines
4.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def bipartite_match(distance, match_indices, match_dist):
"""Bipartite Matching algorithm.
Arg:
distance (numpy.array) : The distance of two entries with shape [M, N].
match_indices (numpy.array): the matched indices from column to row
with shape [1, N], it must be initialized to -1.
match_dist (numpy.array): The matched distance from column to row
with shape [1, N], it must be initialized to 0.
"""
match_pair = []
row, col = distance.shape
for i in range(row):
for j in range(col):
match_pair.append((i, j, distance[i][j]))
match_sorted = sorted(match_pair, key=lambda tup: tup[2], reverse=True)
row_indices = -1 * np.ones((row, ), dtype=np.int)
idx = 0
for i, j, dist in match_sorted:
if idx >= row:
break
if match_indices[j] == -1 and row_indices[i] == -1 and dist > 0:
match_indices[j] = i
row_indices[i] = j
match_dist[j] = dist
idx += 1
def argmax_match(distance, match_indices, match_dist, threshold):
r, c = distance.shape
for j in xrange(c):
if match_indices[j] != -1:
continue
col_dist = distance[:, j]
indices = np.argwhere(col_dist >= threshold).flatten()
if len(indices) < 1:
continue
match_indices[j] = indices[np.argmax(col_dist[indices])]
match_dist[j] = col_dist[match_indices[j]]
def batch_bipartite_match(distance, lod, match_type=None, dist_threshold=None):
"""Bipartite Matching algorithm for batch input.
Arg:
distance (numpy.array) : The distance of two entries with shape [M, N].
lod (list of int): The offsets of each input in this batch.
"""
n = len(lod) - 1
m = distance.shape[1]
match_indices = -1 * np.ones((n, m), dtype=np.int)
match_dist = np.zeros((n, m), dtype=np.float32)
for i in range(len(lod) - 1):
bipartite_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
match_dist[i, :])
if match_type == 'per_prediction':
argmax_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
match_dist[i, :], dist_threshold)
return match_indices, match_dist
class TestBipartiteMatchOpWithLoD(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 5, 11, 23]]
dist = np.random.random((23, 217)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0])
self.inputs = {'DistMat': (dist, lod)}
self.outputs = {
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_dist,
}
def test_check_output(self):
self.check_output()
class TestBipartiteMatchOpWithoutLoD(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 8]]
dist = np.random.random((8, 17)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0])
self.inputs = {'DistMat': dist}
self.outputs = {
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_dist,
}
def test_check_output(self):
self.check_output()
class TestBipartiteMatchOpWithPerPredictionType(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 5, 11, 23]]
dist = np.random.random((23, 237)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0],
'per_prediction', 0.5)
self.inputs = {'DistMat': (dist, lod)}
self.outputs = {
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_dist,
}
self.attrs = {
'match_type': 'per_prediction',
'dist_threshold': 0.5,
}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()