You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
376 lines
12 KiB
376 lines
12 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy
|
|
import random
|
|
import collections
|
|
import paddle.fluid as fluid
|
|
import unittest
|
|
from decorators import *
|
|
|
|
|
|
class Memory(object):
|
|
def __init__(self, shape, dtype='float32'):
|
|
self.ex = numpy.zeros(shape=shape, dtype=dtype)
|
|
self.cur = None
|
|
|
|
def update(self, val):
|
|
assert val.shape == self.ex.shape
|
|
assert val.dtype == self.ex.dtype
|
|
self.cur = val
|
|
|
|
def next(self):
|
|
self.ex = self.cur
|
|
self.cur = None
|
|
|
|
def __next__(self):
|
|
self.next()
|
|
|
|
def reset(self):
|
|
self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
|
|
self.cur = None
|
|
|
|
|
|
class Output(object):
|
|
def __init__(self):
|
|
self.outs = []
|
|
|
|
def next_sequence(self):
|
|
self.outs.append([])
|
|
|
|
def out(self, val):
|
|
self.outs[-1].append(val)
|
|
|
|
def last(self):
|
|
return self.outs[-1][-1]
|
|
|
|
|
|
class BaseRNN(object):
|
|
def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15):
|
|
self.num_seq = num_seq
|
|
self.inputs = collections.defaultdict(list)
|
|
|
|
for _ in xrange(num_seq):
|
|
seq_len = random.randint(1, max_seq_len - 1)
|
|
for iname in ins:
|
|
ishape = ins[iname].get('shape', None)
|
|
idtype = ins[iname].get('dtype', 'float32')
|
|
lst = []
|
|
for _ in xrange(seq_len):
|
|
lst.append(numpy.random.random(size=ishape).astype(idtype))
|
|
self.inputs[iname].append(lst)
|
|
|
|
self.mems = dict()
|
|
for mname in mems:
|
|
mshape = mems[mname].get('shape', None)
|
|
mdtype = mems[mname].get('dtype', 'float32')
|
|
self.mems[mname] = Memory(shape=mshape, dtype=mdtype)
|
|
|
|
self.params = dict()
|
|
for pname in params:
|
|
pshape = params[pname].get('shape', None)
|
|
pdtype = params[pname].get('dtype', 'float32')
|
|
self.params[pname] = numpy.random.random(size=pshape).astype(pdtype)
|
|
|
|
self.outputs = dict()
|
|
|
|
for oname in outs:
|
|
self.outputs[oname] = Output()
|
|
|
|
def step(self, **kwargs):
|
|
raise NotImplementedError()
|
|
|
|
def exe(self):
|
|
retv = dict()
|
|
for out in self.outputs:
|
|
retv[out] = []
|
|
|
|
for seq_id in xrange(self.num_seq):
|
|
for mname in self.mems:
|
|
self.mems[mname].reset()
|
|
for out in self.outputs:
|
|
self.outputs[out].next_sequence()
|
|
|
|
iname0 = self.inputs.keys()[0]
|
|
seq_len = len(self.inputs[iname0][seq_id])
|
|
|
|
for step_id in xrange(seq_len):
|
|
xargs = dict()
|
|
|
|
for iname in self.inputs:
|
|
xargs[iname] = self.inputs[iname][seq_id][step_id]
|
|
|
|
for mname in self.mems:
|
|
xargs[mname] = self.mems[mname]
|
|
|
|
for pname in self.params:
|
|
xargs[pname] = self.params[pname]
|
|
|
|
for out in self.outputs:
|
|
xargs[out] = self.outputs[out]
|
|
|
|
self.step(**xargs)
|
|
|
|
for mname in self.mems:
|
|
next(self.mems[mname])
|
|
|
|
for out in self.outputs:
|
|
retv[out].append(self.outputs[out].last())
|
|
|
|
for out in retv:
|
|
retv[out] = numpy.array(retv[out])
|
|
return retv
|
|
|
|
def to_feed(self, place):
|
|
feed_dict = dict()
|
|
|
|
for iname in self.inputs:
|
|
lod = [0]
|
|
np_flatten = []
|
|
for seq_id in xrange(len(self.inputs[iname])):
|
|
seq_len = len(self.inputs[iname][seq_id])
|
|
lod.append(lod[-1] + seq_len)
|
|
np_flatten.extend(self.inputs[iname][seq_id])
|
|
|
|
t = fluid.Tensor()
|
|
t.set(numpy.array(np_flatten), place)
|
|
t.set_lod([lod])
|
|
feed_dict[iname] = t
|
|
|
|
for pname in self.params:
|
|
feed_dict[pname] = self.params[pname]
|
|
return feed_dict
|
|
|
|
def get_numeric_gradient_of_param(self, param_name, delta=0.001):
|
|
p = self.params[param_name]
|
|
if len(p.shape) != 2:
|
|
raise ValueError("Not support get numeric gradient of an parameter,"
|
|
" which is not matrix")
|
|
g = numpy.zeros(shape=p.shape, dtype=p.dtype)
|
|
|
|
for i in xrange(p.shape[0]):
|
|
for j in xrange(p.shape[1]):
|
|
o = p[i][j]
|
|
p[i][j] += delta
|
|
pos = self._exe_mean_out_()
|
|
p[i][j] -= 2 * delta
|
|
neg = self._exe_mean_out_()
|
|
p[i][j] = o
|
|
g[i][j] = (pos - neg) / (delta * 2)
|
|
return g
|
|
|
|
def get_numeric_gradient_of_input(self,
|
|
input_name,
|
|
delta=0.001,
|
|
return_one_tensor=True):
|
|
ipt = self.inputs[input_name]
|
|
grad = []
|
|
|
|
for seq in ipt:
|
|
seq_grad = []
|
|
for item in seq:
|
|
item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype)
|
|
if len(item.shape) != 1:
|
|
raise ValueError("Not support")
|
|
|
|
for i in xrange(len(item)):
|
|
o = item[i]
|
|
item[i] += delta
|
|
pos = self._exe_mean_out_()
|
|
item[i] -= 2 * delta
|
|
neg = self._exe_mean_out_()
|
|
item[i] = o
|
|
item_grad[i] = (pos - neg) / (delta * 2)
|
|
seq_grad.append(item_grad)
|
|
grad.append(seq_grad)
|
|
|
|
if not return_one_tensor:
|
|
return grad
|
|
|
|
for i in xrange(len(grad)):
|
|
grad[i] = numpy.concatenate(grad[i])
|
|
grad = numpy.concatenate(grad)
|
|
return grad
|
|
|
|
def _exe_mean_out_(self):
|
|
outs = self.exe()
|
|
return numpy.array([o.mean() for o in outs.itervalues()]).mean()
|
|
|
|
|
|
class SeedFixedTestCase(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""Fix random seeds to remove randomness from tests"""
|
|
cls._np_rand_state = numpy.random.get_state()
|
|
cls._py_rand_state = random.getstate()
|
|
|
|
numpy.random.seed(123)
|
|
random.seed(124)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
"""Restore random seeds"""
|
|
numpy.random.set_state(cls._np_rand_state)
|
|
random.setstate(cls._py_rand_state)
|
|
|
|
|
|
class TestSimpleMul(SeedFixedTestCase):
|
|
DATA_NAME = 'X'
|
|
DATA_WIDTH = 32
|
|
PARAM_NAME = 'W'
|
|
HIDDEN_WIDTH = 10
|
|
OUT_NAME = 'Out'
|
|
|
|
class SimpleMul(BaseRNN):
|
|
def __init__(self):
|
|
base = TestSimpleMul
|
|
super(base.SimpleMul, self).__init__({
|
|
base.DATA_NAME: {
|
|
'shape': [base.DATA_WIDTH]
|
|
}
|
|
}, {}, {
|
|
base.PARAM_NAME: {
|
|
'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH]
|
|
}
|
|
}, [base.OUT_NAME])
|
|
|
|
def step(self, X, W, Out):
|
|
Out.out(numpy.matmul(X, W))
|
|
|
|
# Test many times in local to ensure the random seed cannot breaks CI
|
|
# @many_times(10)
|
|
@prog_scope()
|
|
def test_forward_backward(self):
|
|
py_rnn = TestSimpleMul.SimpleMul()
|
|
dat = fluid.layers.data(
|
|
name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
|
|
dat.stop_gradient = False
|
|
|
|
rnn = fluid.layers.DynamicRNN()
|
|
with rnn.block():
|
|
d = rnn.step_input(dat)
|
|
o = fluid.layers.fc(input=d,
|
|
param_attr=self.PARAM_NAME,
|
|
bias_attr=False,
|
|
size=self.HIDDEN_WIDTH,
|
|
act=None)
|
|
rnn.output(o)
|
|
|
|
out = rnn()
|
|
out = fluid.layers.sequence_pool(out, pool_type='last')
|
|
loss = fluid.layers.mean(out)
|
|
fluid.backward.append_backward(loss)
|
|
|
|
cpu = fluid.CPUPlace()
|
|
exe = fluid.Executor(cpu)
|
|
out, w_g, i_g = map(numpy.array,
|
|
exe.run(feed=py_rnn.to_feed(cpu),
|
|
fetch_list=[
|
|
out, self.PARAM_NAME + "@GRAD",
|
|
self.DATA_NAME + "@GRAD"
|
|
],
|
|
return_numpy=False))
|
|
out_by_python = py_rnn.exe()[self.OUT_NAME]
|
|
self.assertTrue(numpy.allclose(out, out_by_python))
|
|
w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
|
|
self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05))
|
|
i_g_num = py_rnn.get_numeric_gradient_of_input(
|
|
input_name=self.DATA_NAME)
|
|
i_g_num = i_g_num.reshape(i_g.shape)
|
|
self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05))
|
|
|
|
|
|
class TestSimpleMulWithMemory(SeedFixedTestCase):
|
|
DATA_WIDTH = 32
|
|
HIDDEN_WIDTH = 20
|
|
DATA_NAME = 'X'
|
|
PARAM_NAME = 'W'
|
|
|
|
class SimpleMulWithMemory(BaseRNN):
|
|
def __init__(self):
|
|
super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__({
|
|
TestSimpleMulWithMemory.DATA_NAME: {
|
|
'shape': [TestSimpleMulWithMemory.DATA_WIDTH]
|
|
}
|
|
}, {'Mem': {
|
|
'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH]
|
|
}}, {
|
|
TestSimpleMulWithMemory.PARAM_NAME: {
|
|
'shape': [
|
|
TestSimpleMulWithMemory.DATA_WIDTH,
|
|
TestSimpleMulWithMemory.HIDDEN_WIDTH
|
|
]
|
|
}
|
|
}, ['Out'])
|
|
|
|
def step(self, X, Mem, W, Out):
|
|
o = numpy.matmul(X, W)
|
|
assert isinstance(Mem, Memory)
|
|
o += Mem.ex
|
|
Mem.update(o)
|
|
assert isinstance(Out, Output)
|
|
Out.out(o)
|
|
|
|
# many_times used locally for debug. Make sure the calculation is stable.
|
|
# @many_times(10)
|
|
@prog_scope()
|
|
def test_forward_backward(self):
|
|
py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory()
|
|
data = fluid.layers.data(
|
|
name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
|
|
data.stop_gradient = False
|
|
rnn = fluid.layers.DynamicRNN()
|
|
with rnn.block():
|
|
d = rnn.step_input(data)
|
|
mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH])
|
|
hidden = fluid.layers.fc(input=d,
|
|
size=self.HIDDEN_WIDTH,
|
|
param_attr=self.PARAM_NAME,
|
|
bias_attr=False,
|
|
act=None)
|
|
o = fluid.layers.elementwise_add(x=hidden, y=mem)
|
|
rnn.update_memory(mem, o)
|
|
rnn.output(o)
|
|
|
|
out = rnn()
|
|
last = fluid.layers.sequence_pool(input=out, pool_type='last')
|
|
loss = fluid.layers.mean(last)
|
|
fluid.backward.append_backward(loss)
|
|
|
|
cpu = fluid.CPUPlace()
|
|
exe = fluid.Executor(cpu)
|
|
feed = py_rnn.to_feed(cpu)
|
|
last_np, w_g, i_g = map(numpy.array,
|
|
exe.run(feed=feed,
|
|
fetch_list=[
|
|
last, self.PARAM_NAME + "@GRAD",
|
|
self.DATA_NAME + "@GRAD"
|
|
],
|
|
return_numpy=False))
|
|
last_by_py, = py_rnn.exe().values()
|
|
w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
|
|
self.assertTrue(numpy.allclose(last_np, last_by_py))
|
|
|
|
self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1))
|
|
i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME)
|
|
i_g_num = i_g_num.reshape(i_g.shape)
|
|
|
|
# Since this RNN has many float add. The number could be not stable.
|
|
# rtol = 0.1
|
|
self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|