You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.1 KiB
135 lines
4.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class GRUActivationType(OpTest):
|
|
identity = 0
|
|
sigmoid = 1
|
|
tanh = 2
|
|
relu = 3
|
|
|
|
|
|
def identity(x):
|
|
return x
|
|
|
|
|
|
def sigmoid(x):
|
|
return 1. / (1. + np.exp(-x))
|
|
|
|
|
|
def tanh(x):
|
|
return 2. * sigmoid(2. * x) - 1.
|
|
|
|
|
|
def relu(x):
|
|
return np.maximum(x, 0)
|
|
|
|
|
|
class TestGRUUnitOp(OpTest):
|
|
batch_size = 5
|
|
frame_size = 10
|
|
activate = {
|
|
GRUActivationType.identity: identity,
|
|
GRUActivationType.sigmoid: sigmoid,
|
|
GRUActivationType.tanh: tanh,
|
|
GRUActivationType.relu: relu,
|
|
}
|
|
|
|
def set_inputs(self):
|
|
batch_size = self.batch_size
|
|
frame_size = self.frame_size
|
|
self.op_type = 'gru_unit'
|
|
self.inputs = {
|
|
'Input': np.random.uniform(
|
|
-0.1, 0.1, (batch_size, frame_size * 3)).astype('float64'),
|
|
'HiddenPrev': np.random.uniform(
|
|
-0.1, 0.1, (batch_size, frame_size)).astype('float64'),
|
|
'Weight': np.random.uniform(
|
|
-1. / math.sqrt(frame_size), 1. / math.sqrt(frame_size),
|
|
(frame_size, frame_size * 3)).astype('float64'),
|
|
}
|
|
self.attrs = {
|
|
'activation': GRUActivationType.tanh,
|
|
'gate_activation': GRUActivationType.sigmoid
|
|
}
|
|
|
|
def set_outputs(self):
|
|
# GRU calculations
|
|
batch_size = self.batch_size
|
|
frame_size = self.frame_size
|
|
x = self.inputs['Input']
|
|
h_p = self.inputs['HiddenPrev']
|
|
w = self.inputs['Weight']
|
|
b = self.inputs['Bias'] if self.inputs.has_key('Bias') else np.zeros(
|
|
(1, frame_size * 3))
|
|
g = x + np.tile(b, (batch_size, 1))
|
|
w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape(
|
|
(frame_size, frame_size * 2))
|
|
u_r = self.activate[self.attrs['gate_activation']](np.dot(
|
|
h_p, w_u_r) + g[:, :frame_size * 2])
|
|
u = u_r[:, :frame_size]
|
|
r = u_r[:, frame_size:frame_size * 2]
|
|
r_h_p = r * h_p
|
|
w_c = w.flatten()[frame_size * frame_size * 2:].reshape(
|
|
(frame_size, frame_size))
|
|
c = self.activate[self.attrs['activation']](np.dot(r_h_p, w_c) +
|
|
g[:, frame_size * 2:])
|
|
g = np.hstack((u_r, c))
|
|
h = u * c + (1 - u) * h_p
|
|
self.outputs = {
|
|
'Gate': g.astype('float64'),
|
|
'ResetHiddenPrev': r_h_p.astype('float64'),
|
|
'Hidden': h.astype('float64')
|
|
}
|
|
|
|
def setUp(self):
|
|
self.set_inputs()
|
|
self.set_outputs()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['Input', 'HiddenPrev', 'Weight'], ['Hidden'])
|
|
|
|
|
|
class TestGRUUnitOpWithBias(TestGRUUnitOp):
|
|
def set_inputs(self):
|
|
batch_size = self.batch_size
|
|
frame_size = self.frame_size
|
|
super(TestGRUUnitOpWithBias, self).set_inputs()
|
|
self.inputs['Bias'] = np.random.uniform(
|
|
-0.1, 0.1, (1, frame_size * 3)).astype('float64')
|
|
self.attrs = {
|
|
'activation': GRUActivationType.identity,
|
|
'gate_activation': GRUActivationType.sigmoid
|
|
}
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['Input', 'HiddenPrev', 'Weight', 'Bias'], ['Hidden'])
|
|
|
|
def test_check_grad_ingore_input(self):
|
|
self.check_grad(
|
|
['HiddenPrev', 'Weight', 'Bias'], ['Hidden'],
|
|
no_grad_set=set('Input'))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|