You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.1 KiB
168 lines
5.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def get_output_shape(attrs, in_shape):
|
|
img_height = in_shape[2]
|
|
img_width = in_shape[3]
|
|
|
|
paddings = attrs['paddings']
|
|
kernels = attrs['kernels']
|
|
strides = attrs['strides']
|
|
|
|
output_height = \
|
|
1 + \
|
|
(img_height + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
|
|
strides[0]
|
|
|
|
output_width = \
|
|
1 + \
|
|
(img_width + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
|
|
strides[1]
|
|
|
|
return output_height, output_width
|
|
|
|
|
|
def im2col(attrs, im, col):
|
|
"""
|
|
im: {CHW}
|
|
col:
|
|
{outputHeight, outputWidth, inputChannels, filterHeight, filterWidth}
|
|
"""
|
|
input_channels, input_height, input_width = im.shape
|
|
output_height, output_width, _, filter_height, filter_width = col.shape
|
|
|
|
stride_height, stride_width = attrs['strides']
|
|
padding_height, padding_width = attrs['paddings'][0:2]
|
|
|
|
for col_row_idx in range(0, output_height):
|
|
for col_col_idx in range(0, output_width):
|
|
for channel in range(0, input_channels):
|
|
for filter_row_idx in range(0, filter_height):
|
|
for filter_col_idx in range(0, filter_width):
|
|
im_row_offset = col_row_idx * stride_height \
|
|
+ filter_row_idx - padding_height
|
|
|
|
im_col_offset = col_col_idx * stride_width \
|
|
+ filter_col_idx - padding_width
|
|
|
|
if (im_row_offset < 0 or
|
|
im_row_offset >= input_height or
|
|
im_col_offset < 0 or
|
|
im_col_offset >= input_width):
|
|
col[col_row_idx][col_col_idx][channel][\
|
|
filter_row_idx][filter_col_idx] = 0.0
|
|
else:
|
|
im_offset = (channel * input_height + im_row_offset \
|
|
) * input_width + im_col_offset
|
|
|
|
col[col_row_idx][col_col_idx][channel][\
|
|
filter_row_idx][filter_col_idx] = im[channel][ \
|
|
im_row_offset][im_col_offset]
|
|
|
|
|
|
def Im2Sequence(inputs, attrs):
|
|
output_height, output_width = get_output_shape(attrs, inputs.shape)
|
|
img_channels = inputs.shape[1]
|
|
batch_size = inputs.shape[0]
|
|
out = np.zeros([
|
|
batch_size, output_height, output_width, img_channels,
|
|
attrs['kernels'][0], attrs['kernels'][1]
|
|
]).astype("float32")
|
|
|
|
for i in range(len(inputs)):
|
|
im2col(attrs, inputs[i], out[i])
|
|
|
|
out = out.reshape([
|
|
batch_size * output_height * output_width,
|
|
img_channels * attrs['kernels'][0] * attrs['kernels'][1]
|
|
])
|
|
return out
|
|
|
|
|
|
class TestBlockExpandOp(OpTest):
|
|
def config(self):
|
|
self.batch_size = 1
|
|
self.img_channels = 3
|
|
self.img_height = 4
|
|
self.img_width = 4
|
|
self.attrs = {
|
|
'kernels': [2, 2],
|
|
'strides': [1, 1],
|
|
'paddings': [1, 1, 1, 1]
|
|
}
|
|
|
|
def setUp(self):
|
|
self.config()
|
|
self.op_type = "im2sequence"
|
|
x = np.random.uniform(0.1, 1, [
|
|
self.batch_size, self.img_channels, self.img_height, self.img_width
|
|
]).astype("float32")
|
|
|
|
out = Im2Sequence(x, self.attrs)
|
|
self.inputs = {'X': x}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestBlockExpandOpCase2(TestBlockExpandOp):
|
|
def config(self):
|
|
self.batch_size = 2
|
|
self.img_channels = 3
|
|
self.img_height = 4
|
|
self.img_width = 5
|
|
self.attrs = {
|
|
'kernels': [2, 1],
|
|
'strides': [2, 1],
|
|
'paddings': [2, 1, 2, 1]
|
|
}
|
|
|
|
|
|
class TestBlockExpandOpCase3(TestBlockExpandOp):
|
|
def config(self):
|
|
self.batch_size = 3
|
|
self.img_channels = 1
|
|
self.img_height = 4
|
|
self.img_width = 5
|
|
self.attrs = {
|
|
'kernels': [2, 1],
|
|
'strides': [2, 1],
|
|
'paddings': [2, 0, 2, 0]
|
|
}
|
|
|
|
|
|
class TestBlockExpandOpCase4(TestBlockExpandOp):
|
|
def config(self):
|
|
self.batch_size = 2
|
|
self.img_channels = 2
|
|
self.img_height = 3
|
|
self.img_width = 3
|
|
self.attrs = {
|
|
'kernels': [2, 2],
|
|
'strides': [1, 1],
|
|
'paddings': [0, 0, 0, 0]
|
|
}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|