You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.6 KiB
161 lines
5.6 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import math
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.framework as framework
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
def exponential_decay(learning_rate,
|
|
global_step,
|
|
decay_steps,
|
|
decay_rate,
|
|
staircase=False):
|
|
exponent = global_step / decay_steps
|
|
if staircase:
|
|
exponent = math.floor(exponent)
|
|
return learning_rate * decay_rate**exponent
|
|
|
|
|
|
def natural_exp_decay(learning_rate,
|
|
global_step,
|
|
decay_steps,
|
|
decay_rate,
|
|
staircase=False):
|
|
exponent = float(global_step) / float(decay_steps)
|
|
if staircase:
|
|
exponent = math.floor(exponent)
|
|
return learning_rate * math.exp(-1 * decay_rate * exponent)
|
|
|
|
|
|
def inverse_time_decay(learning_rate,
|
|
global_step,
|
|
decay_steps,
|
|
decay_rate,
|
|
staircase=False):
|
|
temp = float(global_step) / float(decay_steps)
|
|
if staircase:
|
|
temp = math.floor(temp)
|
|
return learning_rate / (1 + decay_rate * temp)
|
|
|
|
|
|
def polynomial_decay(learning_rate,
|
|
global_step,
|
|
decay_steps,
|
|
end_learning_rate=0.0001,
|
|
power=1.0,
|
|
cycle=False):
|
|
if cycle:
|
|
div = math.ceil(global_step / float(decay_steps))
|
|
if div == 0:
|
|
div = 1
|
|
decay_steps = decay_steps * div
|
|
else:
|
|
global_step = min(global_step, decay_steps)
|
|
return (learning_rate - end_learning_rate) * \
|
|
((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate
|
|
|
|
|
|
def piecewise_decay(global_step, boundaries, values):
|
|
assert len(boundaries) + 1 == len(values)
|
|
for i in range(len(boundaries)):
|
|
if global_step < boundaries[i]:
|
|
return values[i]
|
|
return values[len(values) - 1]
|
|
|
|
|
|
class TestLearningRateDecay(unittest.TestCase):
|
|
def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
|
|
kwargs)
|
|
|
|
def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
|
|
kwargs):
|
|
|
|
decayed_lr = fluid_decay_fn(**kwargs)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
for step in range(10):
|
|
lr_val, = exe.run(fluid.default_main_program(),
|
|
feed={},
|
|
fetch_list=[decayed_lr])
|
|
python_decayed_lr = python_decay_fn(
|
|
global_step=float(step), **kwargs)
|
|
self.assertAlmostEqual(
|
|
python_decayed_lr,
|
|
lr_val[0],
|
|
msg='Failed fn is {0}, Python result is {1}, Fluid result is {2}'.
|
|
format(python_decay_fn.__name__,
|
|
str(python_decayed_lr), str(lr_val[0])))
|
|
|
|
def test_decay(self):
|
|
common_kwargs_true = {
|
|
"learning_rate": 1.0,
|
|
"decay_steps": 5,
|
|
"decay_rate": 0.5,
|
|
"staircase": True
|
|
}
|
|
common_kwargs_false = copy.deepcopy(common_kwargs_true)
|
|
common_kwargs_false["staircase"] = False
|
|
|
|
decay_fns = [
|
|
(exponential_decay, layers.exponential_decay, common_kwargs_true),
|
|
(exponential_decay, layers.exponential_decay, common_kwargs_false),
|
|
(natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
|
|
(natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
|
|
(inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
|
|
(inverse_time_decay, layers.inverse_time_decay,
|
|
common_kwargs_false),
|
|
(polynomial_decay, layers.polynomial_decay, {
|
|
"learning_rate": 1.0,
|
|
"decay_steps": 5,
|
|
"cycle": True
|
|
}),
|
|
(polynomial_decay, layers.polynomial_decay, {
|
|
"learning_rate": 1.0,
|
|
"decay_steps": 5,
|
|
"cycle": False
|
|
}),
|
|
(piecewise_decay, layers.piecewise_decay, {
|
|
"boundaries": [3, 6, 9],
|
|
"values": [0.1, 0.2, 0.3, 0.4]
|
|
}),
|
|
]
|
|
|
|
for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
|
|
print("decay_fn=" + py_decay_fn.__name__ + " kwargs=" + str(kwargs))
|
|
main_program = framework.Program()
|
|
startup_program = framework.Program()
|
|
with framework.program_guard(main_program, startup_program):
|
|
self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|