You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_mean_iou.py

115 lines
3.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import unittest
import numpy as np
from op_test import OpTest
def compute_mean_iou(predictions, labels, num_classes, in_wrongs, in_corrects,
in_mean_ious):
assert predictions.shape == labels.shape
predictions = predictions.flatten()
labels = labels.flatten()
out_wrong = np.zeros([num_classes]).astype("int32")
for _, wrong in in_wrongs:
out_wrong += wrong
out_correct = np.zeros([num_classes]).astype("int32")
for _, correct in in_corrects:
out_correct += correct
for pred, label in zip(predictions, labels):
if pred == label:
out_correct[pred] += 1
else:
out_wrong[pred] += 1
out_wrong[label] += 1
denominator = out_wrong + out_correct
valid_count = (denominator != 0).sum()
denominator = np.where(denominator > 0, denominator,
np.ones(denominator.shape))
mean_iou = (out_correct / denominator).sum() / valid_count
for _, in_mean_iou in in_mean_ious:
mean_iou += in_mean_iou
return mean_iou, out_wrong, out_correct
class TestMeanIOUOp(OpTest):
def setUp(self):
self.config()
self.op_type = "mean_iou"
predictions = np.random.randint(0, self.num_classes,
self.image_size).astype("int32")
labels = np.random.randint(0, self.num_classes,
self.image_size).astype("int32")
in_wrongs = []
for i in range(self.in_wrong_num):
in_wrongs.append(("in_wrong_%d" % i, np.random.randint(
0, 10, [self.num_classes]).astype("int32")))
in_corrects = []
for i in range(self.in_correct_num):
in_corrects.append(("in_correct_%d" % i, np.random.randint(
0, 10, [self.num_classes]).astype("int32")))
in_mean_ious = []
for i in range(self.in_mean_iou_num):
in_mean_ious.append(("in_mean_iou_%d" % i, np.random.uniform(
0, 1, [1]).astype("float32")))
self.inputs = {
'Predictions': predictions,
'Labels': labels,
'InWrongs': in_wrongs,
'InCorrects': in_corrects,
'InMeanIou': in_mean_ious
}
self.attrs = {'num_classes': long(self.num_classes)}
mean_iou, out_wrong, out_correct = compute_mean_iou(
predictions, labels, self.num_classes, in_wrongs, in_corrects,
in_mean_ious)
self.outputs = {
'OutMeanIou': mean_iou,
'OutWrong': out_wrong,
'OutCorrect': out_correct
}
def config(self):
self.num_classes = 10
self.image_size = [128, 128]
self.in_wrong_num = 0
self.in_correct_num = 0
self.in_mean_iou_num = 0
def test_check_output(self):
self.check_output()
class TestCase1(TestMeanIOUOp):
def config(self):
self.num_classes = 5
self.image_size = [100, 128]
self.in_wrong_num = 2
self.in_correct_num = 2
self.in_mean_iou_num = 2
if __name__ == '__main__':
unittest.main()