You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_nce.py

113 lines
3.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def nce(input, weight, bias, sample_weight, labels, num_classes,
num_sample_class):
samples = []
sample_labels = []
batch_size = input.shape[0]
num_true_class = labels.shape[1]
for i in range(batch_size):
w = 1 if sample_weight is None else sample_weight[i]
for label in labels[i]:
samples.append((i, label, True, w))
sample_labels.append(label)
for num in range(num_sample_class):
samples.append((i, num, False, w))
sample_labels.append(num)
# forward bias
sample_out = np.zeros(len(samples)).astype(np.float32)
if bias is not None:
for i in range(len(samples)):
sample_out[i] = bias[samples[i][1]]
# forward weight
for i in range(len(samples)):
sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
# forward activation
sample_out = 1.0 / (1.0 + np.exp(-sample_out))
# forward cost
out = np.zeros(batch_size).astype(np.float32)
b = 1.0 / num_classes * num_sample_class
for i in range(len(samples)):
o = sample_out[i]
cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
out[samples[i][0]] += cost * samples[i][3]
return (out[:, np.newaxis], np.array(sample_out).reshape(
batch_size, num_sample_class + num_true_class),
np.array(sample_labels).reshape(batch_size,
num_sample_class + num_true_class))
class TestNCE(OpTest):
def generate_data(self, dim, batch_size, num_classes, num_true_class,
num_neg_samples):
input = np.random.randn(batch_size, dim).astype(np.float32)
weight = np.random.randn(num_classes, dim).astype(np.float32)
bias = np.random.randn(num_classes).astype(np.float32)
sample_weight = np.random.randn(batch_size).astype(np.float32)
labels = np.random.randint(0, num_classes, (batch_size, num_true_class))
self.attrs = {
'num_total_classes': num_classes,
'num_neg_samples': num_neg_samples,
'custom_neg_classes': range(num_neg_samples)
}
self.inputs = {
'Input': input,
'Label': labels,
'Weight': weight,
'Bias': bias,
'SampleWeight': sample_weight
}
def set_data(self):
self.generate_data(5, 5, 4, 1, 2)
def compute(self):
out = nce(self.inputs['Input'], self.inputs['Weight'],
self.inputs['Bias'], self.inputs['SampleWeight'],
self.inputs['Label'], self.attrs['num_total_classes'],
self.attrs['num_neg_samples'])
self.outputs = {
'Cost': out[0],
'SampleLogits': out[1],
'SampleLabels': out[2]
}
def setUp(self):
self.op_type = 'nce'
self.set_data()
self.compute()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02)
class TestNCECase1(TestNCE):
def set_data(self):
self.generate_data(10, 20, 10, 2, 5)
if __name__ == '__main__':
unittest.main()