You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
7.6 KiB
229 lines
7.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
import numpy
|
|
|
|
|
|
class BaseParallelForTest(unittest.TestCase):
|
|
def run_test(self, callback, feed, fetch):
|
|
"""
|
|
Run the unittest for parallel.for
|
|
Args:
|
|
callback(callable): A callable function returns a generator. There
|
|
are two yields in the generator function. The first yield
|
|
returns the data layers, and the second yield returns the loss.
|
|
The modified data variables will be sent back during the first
|
|
yield.
|
|
|
|
feed(dict): The executor feeding dictionary.
|
|
fetch(list|basestr): The fetch name lists.
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
AssertionError when the computation of cpu, parallel.for in cpu,
|
|
gpu, parallel.for in gpu are different.
|
|
|
|
"""
|
|
cpu = fluid.CPUPlace()
|
|
result_cpu = self._run_test_impl_(
|
|
callback=callback,
|
|
feed=feed,
|
|
fetch=fetch,
|
|
place=cpu,
|
|
use_parallel=False)
|
|
result_cpu_parallel = self._run_test_impl_(
|
|
callback=callback,
|
|
feed=feed,
|
|
fetch=fetch,
|
|
place=cpu,
|
|
use_parallel=True)
|
|
if fluid.core.is_compiled_with_cuda():
|
|
gpu = fluid.CUDAPlace(0)
|
|
result_gpu = self._run_test_impl_(
|
|
callback=callback,
|
|
feed=feed,
|
|
fetch=fetch,
|
|
place=gpu,
|
|
use_parallel=False,
|
|
use_gpu=True)
|
|
result_gpu_parallel = self._run_test_impl_(
|
|
callback=callback,
|
|
feed=feed,
|
|
fetch=fetch,
|
|
place=gpu,
|
|
use_parallel=True,
|
|
use_gpu=True)
|
|
result_gpu_nccl = self._run_test_impl_(
|
|
callback=callback,
|
|
feed=feed,
|
|
fetch=fetch,
|
|
place=gpu,
|
|
use_parallel=True,
|
|
use_nccl=True,
|
|
use_gpu=True)
|
|
self._assert_same_(fetch, result_cpu, result_cpu_parallel,
|
|
result_gpu, result_gpu_parallel, result_gpu_nccl)
|
|
else:
|
|
self._assert_same_(fetch, result_cpu, result_cpu_parallel)
|
|
|
|
def _run_test_impl_(self,
|
|
callback,
|
|
feed,
|
|
fetch,
|
|
place,
|
|
use_parallel=False,
|
|
use_nccl=False,
|
|
use_gpu=False):
|
|
"""
|
|
Run a single test, returns the fetch values
|
|
Args:
|
|
place(Place): the computation place.
|
|
use_parallel(bool): Whether use parallel.for or not.
|
|
|
|
Returns:
|
|
Fetched numpy arrays.
|
|
|
|
"""
|
|
if isinstance(fetch, basestring):
|
|
fetch = [fetch]
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
# Fix seed
|
|
main.random_seed = 10
|
|
startup.random_seed = 10
|
|
|
|
with fluid.program_guard(main, startup):
|
|
generator = callback()
|
|
# Automatically insert parallel do if use_parallel = True
|
|
if use_parallel:
|
|
places = fluid.layers.get_places()
|
|
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
|
|
data = next(generator)
|
|
|
|
if isinstance(data, fluid.Variable):
|
|
data = [data]
|
|
|
|
with pd.do():
|
|
ins = map(pd.read_input, data)
|
|
if len(ins) == 1:
|
|
ins = ins[0]
|
|
loss = generator.send(ins) # patch input
|
|
pd.write_output(loss)
|
|
|
|
loss = pd()
|
|
else:
|
|
data = next(generator)
|
|
loss = generator.send(data)
|
|
self.assertIsNotNone(loss)
|
|
avg_loss = fluid.layers.mean(loss)
|
|
fluid.backward.append_backward(loss=avg_loss)
|
|
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup)
|
|
if use_gpu:
|
|
profile_type = 'GPU'
|
|
else:
|
|
profile_type = 'CPU'
|
|
with profiler.profiler(profile_type, 'total', '/tmp/profiler'):
|
|
return exe.run(main, feed=feed, fetch_list=fetch)
|
|
|
|
def _assert_same_(self, fetch, *args):
|
|
"""
|
|
Assert the return values of `run_test` are same.
|
|
Args:
|
|
fetch: Fetch list. Used for print error message
|
|
*args: The fetch result lists of each situations.
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
AssertionError
|
|
|
|
"""
|
|
|
|
def _impl_(a, b, fetch_id, item_id):
|
|
item_str = [
|
|
'CPU', 'ParallelCPU', 'GPU', 'ParallelGPU', 'ParallelGPUNCCL'
|
|
]
|
|
flag = numpy.allclose(a, b, rtol=0.1, atol=1e-3)
|
|
self.assertTrue(flag,
|
|
"The {0} are different in {1}, {2} vs {3}".format(
|
|
fetch[fetch_id], item_str[item_id], a, b))
|
|
|
|
for i, items in enumerate(zip(*args)):
|
|
self.assertGreater(len(items), 0)
|
|
for j in range(1, len(items)):
|
|
_impl_(items[0], items[j], fetch_id=i, item_id=j)
|
|
|
|
|
|
class ParallelOpTest(BaseParallelForTest):
|
|
@staticmethod
|
|
def __network__():
|
|
x = fluid.layers.data(shape=[784], dtype='float32', name='img')
|
|
x = yield x
|
|
hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
|
|
hidden = fluid.layers.batch_norm(input=hidden)
|
|
loss = fluid.layers.mean(hidden)
|
|
yield loss
|
|
|
|
def test_simple_fc(self):
|
|
self.run_test(
|
|
callback=self.__network__,
|
|
feed={
|
|
'img': numpy.random.random(size=(51, 784)).astype('float32')
|
|
},
|
|
fetch=['fc1.w@GRAD'])
|
|
|
|
def test_fc_with_tiny_data(self):
|
|
self.run_test(
|
|
callback=self.__network__,
|
|
feed={'img': numpy.random.random(size=(1, 784)).astype('float32')},
|
|
fetch=['fc1.w@GRAD'])
|
|
|
|
|
|
class ParallelOpTestMultipleInput(BaseParallelForTest):
|
|
@staticmethod
|
|
def __network__():
|
|
x = fluid.layers.data(
|
|
shape=[784], dtype='float32', name='img1', stop_gradient=False)
|
|
y = fluid.layers.data(
|
|
shape=[784], dtype='float32', name='img2', stop_gradient=False)
|
|
yield [x, y]
|
|
x = x + y
|
|
hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
|
|
hidden2 = fluid.layers.fc(input=hidden1, size=200, param_attr='fc2.w')
|
|
hidden3 = fluid.layers.fc(input=hidden2, size=200, param_attr='fc3.w')
|
|
loss = fluid.layers.mean(hidden3)
|
|
yield loss
|
|
|
|
def test_simple_fc(self):
|
|
self.run_test(
|
|
callback=self.__network__,
|
|
feed={
|
|
'img1': numpy.random.random(size=(51, 784)).astype('float32'),
|
|
'img2': numpy.random.random(size=(51, 784)).astype('float32')
|
|
},
|
|
fetch=['fc1.w@GRAD', 'fc2.w@GRAD', 'fc3.w@GRAD'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|