You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
5.8 KiB
200 lines
5.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestSumOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_sum"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestMeanOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_mean"
|
|
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
|
|
self.attrs = {'dim': [1]}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestMaxOp(OpTest):
|
|
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
|
|
|
|
def setUp(self):
|
|
self.op_type = "reduce_max"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.attrs = {'dim': [-1]}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestMinOp(OpTest):
|
|
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
|
|
|
|
def setUp(self):
|
|
self.op_type = "reduce_min"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.attrs = {'dim': [2]}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestProdOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_prod"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.outputs = {'Out': self.inputs['X'].prod(axis=0)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestKeepDimReduce(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_sum"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.attrs = {'dim': [-2], 'keep_dim': True}
|
|
self.outputs = {
|
|
'Out':
|
|
self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class Test1DReduce(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_sum"
|
|
self.inputs = {'X': np.random.random(20).astype("float64")}
|
|
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestReduceAll(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_sum"
|
|
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
|
|
self.attrs = {'reduce_all': True}
|
|
self.outputs = {'Out': self.inputs['X'].sum()}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
## reduction in multi dims
|
|
class TestReduceMeanOpMultiAxises(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_mean"
|
|
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
|
|
self.attrs = {'dim': [1, 2]}
|
|
self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestReduceMaxOpMultiAxises(OpTest):
|
|
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
|
|
|
|
def setUp(self):
|
|
self.op_type = "reduce_max"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.attrs = {'dim': [-2, -1]}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestReduceMinOpMultiAxises(OpTest):
|
|
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
|
|
|
|
def setUp(self):
|
|
self.op_type = "reduce_min"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.attrs = {'dim': [1, 2]}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestKeepDimReduceSumMultiAxises(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "reduce_sum"
|
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
|
self.attrs = {'dim': [-2, -1], 'keep_dim': True}
|
|
self.outputs = {
|
|
'Out':
|
|
self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|