You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_seq_concat_op.py

118 lines
4.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import sys
from op_test import OpTest
def to_abs_lod(lod):
if len(lod) == 0 or len(lod) == 1:
return lod
import copy
new_lod = copy.deepcopy(lod)
for idx, val in enumerate(lod[0]):
new_lod[0][idx] = lod[1][val]
return new_lod
def seq_concat(inputs, level):
lod0 = inputs['X'][0][1][1]
lod1 = inputs['X'][1][1][1]
x0 = inputs['X'][0][1][0]
x1 = inputs['X'][1][1][0]
level_idx = len(lod0) - level - 1
outs = []
for i in range(len(lod0[level_idx]) - 1):
sub_x0 = x0[to_abs_lod(lod0)[level_idx][i]:to_abs_lod(lod0)[level_idx][
i + 1], :]
sub_x1 = x1[to_abs_lod(lod1)[level_idx][i]:to_abs_lod(lod1)[level_idx][
i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
return np.concatenate(outs, axis=0)
class TestSeqConcatOp(OpTest):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((4, 8, 3)).astype('float32')
lod1 = [[0, 2, 4], [0, 1, 2, 3, 4]]
axis = 1
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)}
def setUp(self):
self.op_type = "sequence_concat"
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[0, 2, 4], [0, 1, 3, 5, 7]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 2, 4], [0, 2, 5, 8, 11]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[0, 3, 4], [0, 1, 3, 5, 7]]
axis = 0
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 5, 8], [0, 1, 2, 3, 5, 7, 8, 9, 11]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 3, 4)).astype('float32')
lod0 = [[0, 1, 2, 3, 4]]
x1 = np.random.random((7, 3, 4)).astype('float32')
lod1 = [[0, 1, 3, 5, 7]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[0, 2, 5, 8, 11]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
if __name__ == '__main__':
unittest.main()