You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.0 KiB
116 lines
4.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestSequenceExpand(OpTest):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
|
|
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
|
|
y_lod = [[0, 1, 4, 8]]
|
|
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
|
|
|
|
def compute(self):
|
|
x = self.inputs['X']
|
|
x_data, x_lod = x if type(x) == tuple else (x, None)
|
|
y_data, y_lod = self.inputs['Y']
|
|
|
|
if hasattr(self, 'attrs'):
|
|
ref_level = self.attrs['ref_level']
|
|
else:
|
|
ref_level = len(y_lod) - 1
|
|
|
|
out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype)
|
|
|
|
if x_lod is None:
|
|
x_idx = [i for i in xrange(x_data.shape[0] + 1)]
|
|
else:
|
|
x_idx = x_lod[0]
|
|
out_lod = [[0]]
|
|
|
|
for i in xrange(1, len(y_lod[ref_level])):
|
|
repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1]
|
|
x_len = x_idx[i] - x_idx[i - 1]
|
|
if repeat_num > 0:
|
|
x_sub = x_data[x_idx[i - 1]:x_idx[i], :]
|
|
stacked_x_sub = x_sub
|
|
for r in range(repeat_num - 1):
|
|
stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
|
|
out = np.vstack((out, stacked_x_sub))
|
|
if x_lod is not None:
|
|
for j in xrange(repeat_num):
|
|
out_lod[0].append(out_lod[0][-1] + x_len)
|
|
|
|
if x_lod is None:
|
|
self.outputs = {'Out': out}
|
|
else:
|
|
self.outputs = {'Out': (out, out_lod)}
|
|
|
|
def setUp(self):
|
|
self.op_type = 'sequence_expand'
|
|
self.set_data()
|
|
self.compute()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestSequenceExpandCase1(TestSequenceExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
|
|
x_lod = [[0, 2, 5]]
|
|
y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
|
|
y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
|
|
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
|
|
self.attrs = {'ref_level': 0}
|
|
|
|
|
|
class TestSequenceExpandCase2(TestSequenceExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
|
|
x_lod = [[0, 1]]
|
|
y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
|
|
y_lod = [[0, 2], [0, 2]]
|
|
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
|
|
self.attrs = {'ref_level': 0}
|
|
|
|
|
|
class TestSequenceExpandCase3(TestSequenceExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
|
|
x_lod = [[0, 1, 2, 3, 4]]
|
|
y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
|
|
y_lod = [[0, 2, 4, 4, 6]]
|
|
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
|
|
|
|
|
|
class TestSequenceExpandCase4(TestSequenceExpand):
|
|
def set_data(self):
|
|
data = np.random.uniform(0.1, 1, [5 * 2, 1])
|
|
x_data = np.array(data).reshape([5, 2]).astype('float32')
|
|
x_lod = [[0, 2, 5]]
|
|
y_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
|
|
y_lod = [[0, 1, 3], [0, 1, 3]]
|
|
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|