You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_sequence_reshape.py

86 lines
2.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import math
from op_test import OpTest
class TestSequenceReshape(OpTest):
def setUp(self):
self.op_type = 'sequence_reshape'
dimension = 12
x_lod = [[0, 4, 5, 8, 11]]
x = np.random.uniform(0.1, 1, [11, 24]).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'new_dim': dimension}
out, out_lod = self.compute_output(x, x_lod, dimension)
self.outputs = {'Out': (out, out_lod)}
def compute_output(self, x, x_lod, dimension):
x_width = x.shape[1]
out_lod = [[0]]
for i in xrange(len(x_lod[0]) - 1):
seq_len = x_lod[0][i + 1] - x_lod[0][i]
offset = (seq_len * x_width) / dimension
assert int(offset) * dimension == seq_len * x_width
out_lod[0].append(out_lod[0][-1] + int(offset))
out = np.zeros(shape=(out_lod[0][-1], dimension)).astype('float32')
out.ravel()[:] = x.ravel()[:]
return out, out_lod
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSequenceReshape_reduce(TestSequenceReshape):
def setUp(self):
self.op_type = 'sequence_reshape'
dimension = 24
x_lod = [[0, 4, 6, 8, 12]]
x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'new_dim': dimension}
out, out_lod = self.compute_output(x, x_lod, dimension)
self.outputs = {'Out': (out, out_lod)}
class TestSequenceReshape_same(TestSequenceReshape):
def setUp(self):
self.op_type = 'sequence_reshape'
dimension = 12
x_lod = [[0, 4, 6, 8, 12]]
x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'new_dim': dimension}
out, out_lod = self.compute_output(x, x_lod, dimension)
self.outputs = {'Out': (out, out_lod)}
if __name__ == '__main__':
unittest.main()