You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.9 KiB
83 lines
2.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
from test_pool2d_op import max_pool2D_forward_naive
|
|
from test_pool2d_op import avg_pool2D_forward_naive
|
|
|
|
|
|
class TestSppOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "spp"
|
|
self.init_test_case()
|
|
input = np.random.random(self.shape).astype("float32")
|
|
nsize, csize, hsize, wsize = input.shape
|
|
out_level_flatten = []
|
|
for i in xrange(self.pyramid_height):
|
|
bins = np.power(2, i)
|
|
kernel_size = [0, 0]
|
|
padding = [0, 0]
|
|
kernel_size[0] = np.ceil(hsize /
|
|
bins.astype("double")).astype("int32")
|
|
padding[0] = (
|
|
(kernel_size[0] * bins - hsize + 1) / 2).astype("int32")
|
|
|
|
kernel_size[1] = np.ceil(wsize /
|
|
bins.astype("double")).astype("int32")
|
|
padding[1] = (
|
|
(kernel_size[1] * bins - wsize + 1) / 2).astype("int32")
|
|
out_level = self.pool2D_forward_naive(input, kernel_size,
|
|
kernel_size, padding)
|
|
out_level_flatten.append(
|
|
out_level.reshape(nsize, bins * bins * csize))
|
|
if i == 0:
|
|
output = out_level_flatten[i]
|
|
else:
|
|
output = np.concatenate((output, out_level_flatten[i]), 1)
|
|
# output = np.concatenate(out_level_flatten.tolist(), 0);
|
|
self.inputs = {'X': input.astype('float32'), }
|
|
self.attrs = {
|
|
'pyramid_height': self.pyramid_height,
|
|
'pooling_type': self.pool_type
|
|
}
|
|
|
|
self.outputs = {'Out': output.astype('float32')}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.pool_type != "avg":
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.05)
|
|
|
|
def init_test_case(self):
|
|
self.shape = [3, 2, 4, 4]
|
|
self.pyramid_height = 3
|
|
self.pool2D_forward_naive = max_pool2D_forward_naive
|
|
self.pool_type = "max"
|
|
|
|
|
|
class TestCase2(TestSppOp):
|
|
def init_test_case(self):
|
|
self.shape = [3, 2, 4, 4]
|
|
self.pyramid_height = 3
|
|
self.pool2D_forward_naive = avg_pool2D_forward_naive
|
|
self.pool_type = "avg"
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|