You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.3 KiB
74 lines
2.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.layers as layers
|
|
|
|
|
|
class TranspilerTest(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(self):
|
|
self.trainer_id = 0
|
|
self.trainers = 2
|
|
self.pservers = 2
|
|
self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
|
|
|
|
def net_conf(self):
|
|
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
|
|
|
|
y_predict = fluid.layers.fc(input=x,
|
|
size=1000,
|
|
act=None,
|
|
param_attr=fluid.ParamAttr(name='fc_w'))
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
|
|
|
|
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
|
|
return optimize_ops, params_grads
|
|
|
|
def get_main_program(self):
|
|
main = fluid.Program()
|
|
|
|
with fluid.program_guard(main):
|
|
self.net_conf()
|
|
|
|
return main
|
|
|
|
def get_trainer(self):
|
|
return self._transpiler_instance().get_trainer_program()
|
|
|
|
def get_pserver(self, ep):
|
|
t = self._transpiler_instance()
|
|
pserver = t.get_pserver_program(ep)
|
|
startup = t.get_startup_program(ep, pserver)
|
|
return pserver, startup
|
|
|
|
def _transpiler_instance(self):
|
|
main = self.get_main_program()
|
|
t = fluid.DistributeTranspiler()
|
|
t.transpile(
|
|
self.trainer_id,
|
|
program=main,
|
|
pservers=self.pserver_eps,
|
|
trainers=self.trainers)
|
|
return t
|