You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/trainer.py

483 lines
18 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import os
import core
import data_feeder
import executor
import framework
import io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
import parallel_executor
from transpiler import distribute_transpiler
__all__ = [
'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
'EndStepEvent', 'CheckpointConfig'
]
class BeginEpochEvent(object):
def __init__(self, epoch_id):
self.epoch = epoch_id
class EndEpochEvent(object):
def __init__(self, epoch_id):
self.epoch = epoch_id
class BeginStepEvent(object):
def __init__(self, epoch_id, step_id):
self.epoch = epoch_id
self.step = step_id
self.fetch_metrics = True
class EndStepEvent(object):
def __init__(self, epoch_id, step_id, metrics):
self.epoch = epoch_id
self.step = step_id
self.metrics = metrics
class CheckpointConfig(object):
def __init__(self,
checkpoint_dir=None,
max_num_checkpoints=3,
epoch_interval=1,
step_interval=10):
if checkpoint_dir is None:
self.checkpoint_dir = os.getcwd()
else:
self.checkpoint_dir = checkpoint_dir
self.max_num_checkpoints = max_num_checkpoints
if epoch_interval < 1:
self.epoch_interval = 1
else:
self.epoch_interval = epoch_interval
if step_interval < 1:
self.step_interval = 10
else:
self.step_interval = step_interval
self.epoch_id = 0
self.step_id = 0
self.load_serial = None
self.is_pserver = False
def check_and_get_place(place):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if place is None:
if core.is_compiled_with_cuda():
return core.CUDAPlace(0)
else:
return core.CPUPlace()
else:
if not isinstance(place, core.CUDAPlace) and not isinstance(
place, core.CPUPlace):
raise TypeError("Place should be either CUDAPlace or CPUPlace")
return place
class Trainer(object):
"""
Args:
train_func(callable): A function which will return loss. The loss must be a scalar.
optimizer_func(callable): A function that returns an Optimizer object.
place: The device place of this trainer.
"""
def __init__(self,
train_func,
optimizer_func,
param_path=None,
place=None,
parallel=False,
checkpoint_config=None):
self.__stop = False
self.parallel = parallel
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
# config for checkpoint
# only chief worker will save variables
self.trainer_id = 0
self.checkpoint_cfg = checkpoint_config
if self.checkpoint_cfg:
assert isinstance(self.checkpoint_cfg, CheckpointConfig)
serial = io.get_latest_checkpoint_serial(
self.checkpoint_cfg.checkpoint_dir)
self.checkpoint_cfg.load_serial = serial if serial >= 0 else None
self.scope = core.Scope()
self.startup_program = framework.Program()
self.train_program = framework.Program()
with framework.program_guard(self.train_program, self.startup_program):
program_func_outs = train_func()
self.train_func_outputs = program_func_outs if isinstance(
program_func_outs, list) else [program_func_outs]
self.test_program = self.train_program.clone(for_test=True)
# The first element of program_func_outs is loss.
loss = self.train_func_outputs[0]
optimizer = optimizer_func()
if not isinstance(optimizer, opt_module.Optimizer):
raise TypeError(
"The optimizer should be an instance of Optimizer")
optimize_ops, params_grads = optimizer.minimize(loss)
self.place = check_and_get_place(place)
self._dist_transpile_if_necessary(optimize_ops, params_grads)
# 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope()
# Run startup program
with self._prog_and_scope_guard():
exe = executor.Executor(place)
exe.run(self.startup_program)
if self.checkpoint_cfg and self.checkpoint_cfg.load_serial:
with self._prog_and_scope_guard():
exe = executor.Executor(place)
io.load_checkpoint(exe, self.checkpoint_cfg.checkpoint_dir,
self.checkpoint_cfg.load_serial,
self.startup_program)
if not self.checkpoint_cfg.is_pserver:
epoch_id, step_id = io.load_trainer_args(
self.checkpoint_cfg.checkpoint_dir,
self.checkpoint_cfg.load_serial, self.trainer_id,
self._get_checkpoint_load_args())
self.checkpoint_cfg.epoch_id = int(epoch_id)
self.checkpoint_cfg.step_id = int(step_id)
if param_path and os.path.isdir(param_path):
# load params from param_path into scope
io.load_persist_vars_without_grad(
exe, dirname=param_path, program=self.startup_program)
def _transpile_nccl2_dist(self):
# PADDLE_TRAINER_IPS
if "PADDLE_TRAINER_IPS" not in os.environ:
self.nccl_id_var = None
else:
self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
port = os.getenv("PADDLE_PSERVER_PORT")
worker_ips = os.getenv("PADDLE_TRAINER_IPS")
worker_endpoints = []
for ip in worker_ips.split(","):
worker_endpoints.append(':'.join([ip, port]))
self.num_trainers = len(worker_endpoints)
current_endpoint = os.getenv("POD_IP") + ":" + port
worker_endpoints.remove(current_endpoint)
# TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
# in ParallelExecutor to start
# distributed training using NCCL2
self.nccl_id_var = self.startup_program.global_block().create_var(
name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
self.startup_program.global_block().append_op(
type="gen_nccl_id",
inputs={},
outputs={"NCCLID": self.nccl_id_var},
attrs={
"endpoint": current_endpoint,
"endpoint_list": worker_endpoints,
"trainer_id": self.trainer_id
})
def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
self._transpile_nccl2_dist()
if self.nccl_id_var != None:
return
if "PADDLE_TRAINING_ROLE" not in os.environ:
return
# the port of all pservers, needed by both trainer and pserver
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
# comma separated ips of all pservers, needed by trainer and
# pserver
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
# total number of workers/trainers in the job, needed by
# trainer and pserver
trainers = int(os.getenv("PADDLE_TRAINERS"))
# the IP of the local machine, needed by pserver only
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
# the unique trainer id, starting from 0, needed by trainer
# only
self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
# the role, should be either PSERVER or TRAINER
training_role = os.getenv("PADDLE_TRAINING_ROLE")
with self._prog_and_scope_guard():
t = distribute_transpiler.DistributeTranspiler()
t.transpile(
self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
if training_role == "PSERVER":
if self.checkpoint_cfg:
self.is_pserver = True
self.train_program = t.get_pserver_program(current_endpoint)
self.startup_program = t.get_startup_program(current_endpoint,
self.train_program)
elif training_role == "TRAINER":
self.train_program = t.get_trainer_program()
else:
raise ValueError(
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
def stop(self):
"""
stop training
"""
self.__stop = True
def train(self, num_epochs, event_handler, reader=None, feed_order=None):
"""
Train the model.
Args:
num_epochs: The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void
reader:
feed_order: Feeding order of reader. None will following the defining
order in program
Returns:
"""
training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
if training_role == "PSERVER":
with self._prog_and_scope_guard():
exe = executor.Executor(self.place)
exe.run()
return
if self.parallel:
self._train_by_parallel_executor(num_epochs, event_handler, reader,
feed_order)
else:
self._train_by_executor(num_epochs, event_handler, reader,
feed_order)
def test(self, reader, feed_order):
"""
Test the model on given test data
Args:
reader: The reader that yields test data.
feed_order: Feeding order of reader. None will following the defining
order in program
"""
return self._test_by_executor(reader, feed_order,
self.train_func_outputs)
def save_params(self, param_path):
# reference: save_persistables in io.py
with self._prog_and_scope_guard():
exe = executor.Executor(self.place)
io.save_persistables(exe, dirname=param_path)
@contextlib.contextmanager
def _prog_and_scope_guard(self):
with framework.program_guard(
main_program=self.train_program,
startup_program=self.startup_program):
with executor.scope_guard(self.scope):
yield
def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
"""
Train by Executor and single device.
Args:
num_epochs:
event_handler:
reader:
feed_order:
Returns:
"""
with self._prog_and_scope_guard():
feed_var_list = build_feed_var_list(self.train_program, feed_order)
feeder = data_feeder.DataFeeder(
feed_list=feed_var_list, place=self.place)
exe = executor.Executor(self.place)
reader = feeder.decorate_reader(reader, multi_devices=False)
self._train_by_any_executor(event_handler, exe, num_epochs, reader)
def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
if self.checkpoint_cfg:
epochs = [
epoch_id for epoch_id in range(num_epochs)
if epoch_id >= self.checkpoint_cfg.epoch_id
]
else:
epochs = [epoch_id for epoch_id in range(num_epochs)]
for epoch_id in epochs:
event_handler(BeginEpochEvent(epoch_id))
for step_id, data in enumerate(reader()):
if self.__stop:
if self.checkpoint_cfg:
self._clean_checkpoint()
return
if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \
and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id:
continue
begin_event = BeginStepEvent(epoch_id, step_id)
event_handler(begin_event)
if begin_event.fetch_metrics:
metrics = exe.run(feed=data,
fetch_list=[
var.name
for var in self.train_func_outputs
])
else:
metrics = exe.run(feed=data, fetch_list=[])
if self.checkpoint_cfg:
self._save_checkpoint(epoch_id, step_id)
event_handler(EndStepEvent(epoch_id, step_id, metrics))
event_handler(EndEpochEvent(epoch_id))
if self.checkpoint_cfg:
self._clean_checkpoint()
def _test_by_executor(self, reader, feed_order, fetch_list):
with executor.scope_guard(self.scope):
feed_var_list = build_feed_var_list(self.test_program, feed_order)
feeder = data_feeder.DataFeeder(
feed_list=feed_var_list, place=self.place)
exe = executor.Executor(self.place)
accumulated = len(fetch_list) * [0]
count = 0
for data in reader():
outs = exe.run(program=self.test_program,
feed=feeder.feed(data),
fetch_list=fetch_list)
accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
count += 1
return [x / count for x in accumulated]
def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
feed_order):
with self._prog_and_scope_guard():
pe = self._get_or_create_parallel_executor()
feed_var_list = build_feed_var_list(self.train_program, feed_order)
feeder = data_feeder.DataFeeder(
feed_list=feed_var_list, place=self.place)
reader = feeder.decorate_reader(reader, multi_devices=True)
self._train_by_any_executor(event_handler, pe, num_epochs, reader)
def _get_parallel_executor(self):
return getattr(self, 'parallel_executor', None)
def _get_or_create_parallel_executor(self):
if self._get_parallel_executor() is None:
self.parallel_executor = parallel_executor.ParallelExecutor(
use_cuda=isinstance(self.place, core.CUDAPlace),
loss_name=self.train_func_outputs[0].name)
return self._get_parallel_executor()
def _clean_checkpoint(self):
assert self.checkpoint_cfg
io.clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)
def _get_checkpoint_load_args(self):
"""
epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
"""
return ["epoch_id", "step_id"]
def _get_checkpoint_save_args(self, epoch_id, step_id):
"""
epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
"""
trainer_args = {}
trainer_args["epoch_id"] = epoch_id
trainer_args["step_id"] = step_id
return trainer_args
def _save_checkpoint(self, epoch_id, step_id):
assert self.checkpoint_cfg
if epoch_id % self.checkpoint_cfg.epoch_interval == 0 and step_id % self.checkpoint_cfg.step_interval == 0:
exe = executor.Executor(self.place)
io.save_checkpoint(
executor=exe,
checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
trainer_id=self.trainer_id,
trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
main_program=self.train_program,
max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
def build_feed_var_list(program, feed_order):
if not isinstance(program, framework.Program):
raise TypeError("The 'program' should be an object of Program")
if isinstance(feed_order, list):
feed_var_list = [
program.global_block().var(var_name) for var_name in feed_order
]
else:
if not isinstance(feed_order, dict):
raise TypeError(
"The 'feed_order' should be either None, list or dict.")
if not sorted(feed_order.values()) == range(len(feed_order)):
raise ValueError(
"The values of 'feed_order' should be a permutation of [0, len(feed_order))"
)
sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
feed_var_list = [
program.global_block().var(pair[0]) for pair in sorted_pair_list
]
return feed_var_list